<< Chapter < Page Chapter >> Page >
Details the Continuous-Time Fourier Transform.


In this module, we will derive an expansion for any arbitrary continuous-time function, and in doing so, derive the Continuous Time Fourier Transform (CTFT).

Since complex exponentials are eigenfunctions of linear time-invariant (LTI) systems , calculating the output of an LTI system given s t as an input amounts to simple multiplication, where H s is the eigenvalue corresponding to s. As shown in the figure, a simple exponential input would yield the output

y t H s s t

Using this and the fact that is linear, calculating y t for combinations of complex exponentials is also straightforward.

c 1 s 1 t c 2 s 2 t c 1 H s 1 s 1 t c 2 H s 2 s 2 t n c n s n t n c n H s n s n t

The action of H on an input such as those in the two equations above is easy to explain. independently scales each exponential component s n t by a different complex number H s n . As such, if we can write a function f t as a combination of complex exponentials it allows us to easily calculate the output of a system.

Now, we will look to use the power of complex exponentials to see how we may represent arbitrary signals in terms of a set of simpler functions bysuperposition of a number of complex exponentials. Below we will present the Continuous-Time Fourier Transform (CTFT), commonly referred to as just the Fourier Transform (FT). Because theCTFT deals with nonperiodic signals, we must find a way to include all real frequencies in thegeneral equations.For the CTFT we simply utilize integration over real numbers rather than summation over integers in order to express the aperiodic signals.

Fourier transform synthesis

Joseph Fourier demonstrated that an arbitrary s t can be written as a linear combination of harmonic complex sinusoids

s t n c n j ω 0 n t
where ω 0 2 T is the fundamental frequency. For almost all s t of practical interest, there exists c n to make [link] true. If s t is finite energy ( s t L 0 T 2 ), then the equality in [link] holds in the sense of energy convergence; if s t is continuous, then [link] holds pointwise. Also, if s t meets some mild conditions (the Dirichlet conditions), then [link] holds pointwise everywhere except at points of discontinuity.

The c n - called the Fourier coefficients - tell us "how much" of the sinusoid j ω 0 n t is in s t . The formula shows s t as a sum of complex exponentials, each of which is easily processed by an LTI system (since it is an eigenfunction of every LTI system). Mathematically, it tells us that the set ofcomplex exponentials n n j ω 0 n t form a basis for the space of T-periodic continuous time functions.


Now, in order to take this useful tool and apply it to arbitrary non-periodic signals, we will have to delve deeper into the use of the superposition principle. Let s T ( t ) be a periodic signal having period T . We want to consider what happens to this signal's spectrum as the period goes to infinity. We denote the spectrum for any assumed value of the period by c n ( T ) . We calculate the spectrum according to the Fourier formula for a periodic signal, known as the Fourier Series (for more on this derivation, see the section on Fourier Series .)

c n = 1 T 0 T s ( t ) exp ( - ı ω 0 t ) d t
where ω 0 = T and where we have used a symmetric placement of the integration interval about the origin for subsequent derivational convenience. We vary the frequency index n proportionally as we increase the period. Define making the corresponding Fourier Series
s T ( t ) = - f ( t ) exp ( ı ω 0 t ) 1 T )
As the period increases, the spectral lines become closer together, becoming a continuum. Therefore,
lim T s T ( t ) s ( t ) = - S ( f ) exp ( ı ω 0 t ) d f
S ( f ) = - s ( t ) exp ( - ı ω 0 t ) d t

Continuous-time fourier transform

Ω t f t Ω t

Inverse ctft

f t 1 2 Ω Ω Ω t

It is not uncommon to see the above formula written slightly different. One of themost common differences is the way that the exponential is written. The above equations use the radialfrequency variable Ω in the exponential, where Ω 2 f , but it is also common to include the more explicit expression, 2 f t , in the exponential. Click here for an overview of the notation used in Connexion's DSP modules.

We know from Euler's formula that cos ( ω t ) + sin ( ω t ) = 1 - j 2 e j ω t + 1 + j 2 e - j ω t .

Got questions? Get instant answers now!

Ctft definition demonstration

Interact (when online) with a Mathematica CDF demonstrating Continuous Time Fourier Transform. To Download, right-click and save as .cdf.

Example problems

Find the Fourier Transform (CTFT) of the function

f t α t t 0 0

In order to calculate the Fourier transform, all we need to use is [link] , complex exponentials , and basic calculus.

Ω t f t Ω t t 0 α t Ω t t 0 t α Ω 0 -1 α Ω
Ω 1 α Ω

Got questions? Get instant answers now!

Find the inverse Fourier transform of the ideal lowpass filter defined by

X Ω 1 Ω M 0

Here we will use [link] to find the inverse FT given that t 0 .

x t 1 2 Ω M M Ω t Ω w 1 2 Ω t 1 t M t
x t M sinc M t

Got questions? Get instant answers now!

Fourier transform summary

Because complex exponentials are eigenfunctions of LTI systems, it is often useful to represent signals using a set of complex exponentials as a basis. The continuous time Fourier series synthesis formula expresses a continuous time, periodic function as the sum of continuous time, discrete frequency complex exponentials.

f t n c n j ω 0 n t
The continuous time Fourier series analysis formula gives the coefficients of the Fourier series expansion.
c n 1 T t T 0 f t j ω 0 n t
In both of these equations ω 0 2 T is the fundamental frequency.

Questions & Answers

what does nano mean?
Anassong Reply
nano basically means 10^(-9). nanometer is a unit to measure length.
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
for teaching engĺish at school how nano technology help us
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Signals and systems. OpenStax CNX. Aug 14, 2014 Download for free at http://legacy.cnx.org/content/col10064/1.15
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Signals and systems' conversation and receive update notifications?