<< Chapter < Page Chapter >> Page >
  • Explain gravitational potential energy in terms of work done against gravity.
  • Show that the gravitational potential energy of an object of mass m size 12{m} {} at height h size 12{h} {} on Earth is given by PE g = mgh .
  • Show how knowledge of the potential energy as a function of position can be used to simplify calculations and explain physical phenomena.

Work done against gravity

Climbing stairs and lifting objects is work in both the scientific and everyday sense—it is work done against the gravitational force. When there is work, there is a transformation of energy. The work done against the gravitational force goes into an important form of stored energy that we will explore in this section.

Let us calculate the work done in lifting an object of mass m size 12{m} {} through a height h size 12{h} {} , such as in [link] . If the object is lifted straight up at constant speed, then the force needed to lift it is equal to its weight mg size 12{ ital "mg"} {} . The work done on the mass is then W = Fd = mgh size 12{ ital "W = Fd = mgh"} {} . We define this to be the gravitational potential energy     ( PE g ) put into (or gained by) the object-Earth system. This energy is associated with the state of separation between two objects that attract each other by the gravitational force. For convenience, we refer to this as the PE g size 12{"PE" rSub { size 8{g} } } {} gained by the object, recognizing that this is energy stored in the gravitational field of Earth. Why do we use the word “system”? Potential energy is a property of a system rather than of a single object—due to its physical position. An object’s gravitational potential is due to its position relative to the surroundings within the Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position, we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a ladder will be the same for the first two rungs as for the last two rungs.

Converting between potential energy and kinetic energy

Gravitational potential energy may be converted to other forms of energy, such as kinetic energy. If we release the mass, gravitational force will do an amount of work equal to mgh size 12{ ital "mgh"} {} on it, thereby increasing its kinetic energy by that same amount (by the work-energy theorem). We will find it more useful to consider just the conversion of PE g size 12{"PE" rSub { size 8{g} } } {} to KE size 12{"KE"} {} without explicitly considering the intermediate step of work. (See [link] .) This shortcut makes it is easier to solve problems using energy (if possible) rather than explicitly using forces.

(a) The weight attached to the cuckoo clock is raised by a height h shown by a displacement vector d pointing upward. The weight is attached to a winding chain labeled with a force F vector pointing downward. Vector d is also shown in the same direction as force F. E in is equal to W and W is equal to m g h. (b) The weight attached to the cuckoo clock moves downward. E out is equal to m g h.
(a) The work done to lift the weight is stored in the mass-Earth system as gravitational potential energy. (b) As the weight moves downward, this gravitational potential energy is transferred to the cuckoo clock.

Questions & Answers

Is there a formula for time of free fall given that the body has initial velocity? In other words, formula for time that takes a downward-shot projectile to hit the ground. Thanks!
Cyclone Reply
hi
Agboro
hiii
Chandan
Hi
Sahim
hi
Jeff
hey
Priscilla
sup guys
Bile
Hy
Kulsum
What is unit of watt?
Kulsum
watt is the unit of power
Rahul
p=f.v
Rahul
watt can also be expressed as Nm/s
Rahul
2 forces whose resultant is 100N, are at right angle to each other .if one of them makes an angle of 30 degree with the resultant determine it's magnitude
Victor Reply
50 N... (50 *1.732)N
Sahim
Plz cheak the ans and give reply..
Sahim
Is earth is an inertial frame?
Sahim Reply
The abacus (plural abaci or abacuses), also called a counting frame, is a calculating tool that was in use in Europe, China and Russia, centuries before the adoption of the written Hindu–Arabic numeral system
Sahim
thanks
Irungu
Most welcome
Sahim
Hey.. I've a question.
Sahim Reply
Is earth inertia frame?
Sahim
only the center
Shii
What is an abucus?
Irungu
what would be the correct interrogation "what is time?" or "how much has your watch ticked?"
prakash Reply
a load of 20N on a wire of cross sectional area 8×10^-7m produces an extension of 10.4m. calculate the young modules of the material of the wire is of length 5m
Ebenezer Reply
Young's modulus = stress/strain strain = extension/length (x/l) stress = force/area (F/A) stress/strain is F l/A x
El
so solve it
Ebenezer
please
Ebenezer
two bodies x and y start from rest and move with uniform acceleration of a and 4a respectively. if the bodies cover the same distance in terms of tx and ty what is the ratio of tx to ty
Oluwatola Reply
what is cesium atoms?
prakash Reply
The atoms which form the element Cesium are known as Cesium atoms.
Naman
A material that combines with and removes trace gases from vacuum tubes.
Shankar
what is difference between entropy and heat capacity
Varun
Heat capacity can be defined as the amount of thermal energy required to warm the sample by 1°C. entropy is the disorder of the system. heat capacity is high when the disorder is high.
Chathu
I want learn physics
Vinodhini Reply
sir how to understanding clearly
Vinodhini
try to imagine everything you study in 3d
revolutionary
pls give me one title
Vinodhini
displacement acceleration how understand
Vinodhini
vernier caliper usage practically
Vinodhini
karthik sir is there
Vinodhini
what are the solution to all the exercise..?
What is realm
Vinodhini Reply
The quantum realm, also called the quantum scale, is a term of art inphysics referring to scales where quantum mechanical effects become important when studied as an isolated system. Typically, this means distances of 100 nanometers (10−9meters) or less or at very low temperature.
revolutionary
How to understand physics
Vinodhini Reply
i like physics very much
Vinodhini
i want know physics practically where used in daily life
Vinodhini
I want to teach physics very interesting to studentd
Vinodhini
how can you build interest in physics
Prince
by reading it
Austin
understanding difficult
Vinodhini
vinodhini mam, physics is used in our day to day life in all events..... everything happening around us can be explained in the base of physics..... saying simple stories happening in our daily life and relating it to physics and questioning students about how or why its happening like that can make
revolutionary
your class more interesting
revolutionary
anything send about physics daily life
Vinodhini
How to understand easily
Vinodhini
check out "LMES" youtube channel
revolutionary
even when you see this message in your phone...it works accord to a physics principle. you touch screen works based on physics, your internet works based on physics, etc....... check out google and search for it
revolutionary
what is mean by Newtonian principle of Relativity? definition and explanation with example
revolutionary Reply
what is art physics
Akinbulejo Reply
I've been trying to download a good and comprehensive textbook for physics, pls can somebody help me out?
Olanrewaju
try COLLEGE PHYSICS!! I think it will give you an edge.
Lawal
c=1/c1+c2/1+c3 what is the answer
Akinbulejo Reply
got on answers bro
smith
This may seem like a really stupid question, but is mechanical energy the same as potential energy? If not, what is the difference?
Nikki Reply
what is c=1\c1,c=2\c2,c=3\c3
Akinbulejo
mechanical energy is of two types 1: kinetic energy 2: potential energy,so, potential energy is actually the type of mechanical energy ,the mechanical due to position is designated as potential energy
Iram
Thank you!!!!!
Nikki
Can someone possibly walk me through this problem? " A worker drives a 0.500 kg spike into a rail tie with a 2.50 kg sledgehammer. The hammer hits the spike with a speed of 65.0 m/s. If one-third Of the hammer's kinetic energy is converted to the internal energy of rhe hammer and spike.
Nikki
how much does the total internal energy increase
Nikki
you know the mass and the velocity of the hammer. therefore using the equation (mv^2)/2 you can find the kinetic energy. then take one third of this value and that will be your change in internal energy. here, the important thing is that spike is stationary so it does not contribute to initial Energ
Chathu
Thabk you! :)
Nikki
Practice Key Terms 1

Get the best College physics course in your pocket!





Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask