# 1.7 Percent

 Page 1 / 1
This module is from Elementary Algebra by Denny Burzynski and Wade Ellis, Jr. This chapter contains many examples of arithmetic techniques that are used directly or indirectly in algebra. Since the chapter is intended as a review, the problem-solving techniques are presented without being developed. Therefore, no work space is provided, nor does the chapter contain all of the pedagogical features of the text. As a review, this chapter can be assigned at the discretion of the instructor and can also be a valuable reference tool for the student.

## Overview

• The Meaning of Percent
• Converting A Fraction To A Percent
• Converting A Decimal To A Percent
• Converting A Percent To A Decimal

## The meaning of percent

The word percent comes from the Latin word “per centum,” “per” meaning “for each,” and “centum” meaning “hundred.”

## Percent (%)

Percent means “for each hundred” or “for every hundred.” The symbol % is used to represent the word percent.

Thus, $\begin{array}{rrrrr}\hfill 1%=\frac{1}{100}& \hfill & \hfill \text{or}& \hfill & \hfill 1%=0.01.\end{array}$

## Converting a fraction to a percent

We can see how a fraction can be converted to a percent by analyzing the method that $\frac{3}{5}$ is converted to a percent. In order to convert $\frac{3}{5}$ to a percent, we need to introduce $\frac{1}{100}$ (since percent means for each hundred).

$\begin{array}{rrrrr}\hfill \frac{3}{5}& \hfill =& \frac{3}{5}\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{100}{100}\hfill & \hfill & \text{Multiply\hspace{0.17em}the\hspace{0.17em}fraction\hspace{0.17em}by\hspace{0.17em}1}.\hfill \\ \hfill & \hfill =& \frac{3}{5}\text{\hspace{0.17em}}·\text{\hspace{0.17em}}100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill & \hfill & \text{Since \hspace{0.17em}}\frac{100}{100}=100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}.\hfill \\ \hfill & \hfill =& \frac{300}{5}\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill & \hfill & \text{Divide\hspace{0.17em}}300\text{\hspace{0.17em}by\hspace{0.17em}5}.\hfill \\ \hfill & \hfill =& 60\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill & \hfill & \text{Multiply\hspace{0.17em}the\hspace{0.17em}fractions}.\hfill \\ \hfill & \hfill =& 60%\hfill & \hfill & \text{Replace\hspace{0.17em}}\frac{1}{100}\text{\hspace{0.17em}}\text{with\hspace{0.17em}the\hspace{0.17em}}%\text{\hspace{0.17em}symbol}.\hfill \end{array}$

## Fraction to percent

To convert a fraction to a percent, multiply the fraction by 1 in the form $100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}$ , then replace $\frac{1}{100}$ with the % symbol.

## Sample set a

Convert each fraction to a percent.

$\begin{array}{lll}\frac{1}{4}\hfill & =\hfill & \frac{1}{4}\text{\hspace{0.17em}}·\text{\hspace{0.17em}}100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & \frac{100}{4}\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & 25\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & 25%\hfill \end{array}$

$\begin{array}{lll}\frac{8}{5}\hfill & =\hfill & \frac{8}{5}\text{\hspace{0.17em}}·\text{\hspace{0.17em}}100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & \frac{800}{5}\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & 160%\hfill \end{array}$

$\begin{array}{lll}\frac{4}{9}\hfill & =\hfill & \frac{4}{9}\text{\hspace{0.17em}}·\text{\hspace{0.17em}}100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & \frac{400}{9}\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & \left(44.4...\right)\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & \left(44.\overline{4}\right)\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & 44.\overline{4}%\hfill \end{array}$

## Converting a decimal to a percent

We can see how a decimal is converted to a percent by analyzing the method that $0.75$ is converted to a percent. We need to introduce $\frac{1}{100}.$

$\begin{array}{lllll}0.75\hfill & =\hfill & 0.75\text{\hspace{0.17em}}·\text{\hspace{0.17em}}100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill & \hfill & \text{Multiply\hspace{0.17em}the\hspace{0.17em}decimal\hspace{0.17em}by\hspace{0.17em}1}\text{.}\hfill \\ \hfill & =\hfill & 75\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill & \hfill & \hfill \\ \hfill & =\hfill & 75%\hfill & \hfill & \text{Replace\hspace{0.17em}}\frac{1}{100}\text{\hspace{0.17em}with\hspace{0.17em}the\hspace{0.17em}%\hspace{0.17em}symbol}.\hfill \end{array}$

## Decimal to percent

To convert a fraction to a percent, multiply the decimal by 1 in the form $100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}$ , then replace $\frac{1}{100}$ with the % symbol. This amounts to moving the decimal point 2 places to the right.

## Sample set b

Convert each decimal to a percent.

$\begin{array}{lll}0.62\hfill & =\hfill & 0.62\text{\hspace{0.17em}}·\text{\hspace{0.17em}}100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & 62\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & 62%\hfill \end{array}$

Notice that the decimal point in the original number has been moved to the right 2 places.

$\begin{array}{lll}8.4\hfill & =\hfill & 8.4\text{\hspace{0.17em}}·\text{\hspace{0.17em}}100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & 840\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & 840%\hfill \end{array}$

Notice that the decimal point in the original number has been moved to the right 2 places.

$\begin{array}{lll}0.47623\hfill & =\hfill & 0.47623\text{\hspace{0.17em}}·\text{\hspace{0.17em}}100\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & 0.47623\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & 47.623%\hfill \end{array}$

Notice that the decimal point in the original number has been moved to the right 2 places.

## Converting a percent to a decimal

We can see how a percent is converted to a decimal by analyzing the method that 12% is converted to a decimal. We need to introduce $\frac{1}{100}.$

$\begin{array}{lllll}12%\hfill & =\hfill & 12\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill & \hfill & \text{Replace}\text{\hspace{0.17em}}%\text{\hspace{0.17em}}\text{with}\text{\hspace{0.17em}}\frac{1}{100}.\hfill \\ \hfill & =\hfill & \frac{12}{100}\hfill & \hfill & \text{Multiply\hspace{0.17em}the\hspace{0.17em}fractions}.\hfill \\ \hfill & =\hfill & 0.12\hfill & \hfill & \text{Divide\hspace{0.17em}12\hspace{0.17em}by\hspace{0.17em}1}00.\hfill \end{array}$

## Percent to decimal

To convert a percent to a decimal, replace the % symbol with $\frac{1}{100},$ then divide the number by 100. This amounts to moving the decimal point 2 places to the left.

## Sample set c

Convert each percent to a decimal.

$\begin{array}{lll}48%\hfill & =\hfill & 48\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & \frac{48}{100}\hfill \\ \hfill & =\hfill & 0.48\hfill \end{array}$

Notice that the decimal point in the original number has been moved to the left 2 places.

$\begin{array}{lll}659%\hfill & =\hfill & 659\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & \frac{659}{100}\hfill \\ \hfill & =\hfill & 6.59\hfill \end{array}$

Notice that the decimal point in the original number has been moved to the left 2 places.

$\begin{array}{lll}0.4113%\hfill & =\hfill & 0.4113\text{\hspace{0.17em}}·\text{\hspace{0.17em}}\frac{1}{100}\hfill \\ \hfill & =\hfill & \frac{0.4113}{100}\hfill \\ \hfill & =\hfill & 0.004113\hfill \end{array}$

Notice that the decimal point in the original number has been moved to the left 2 places.

## Exercises

For the following problems, convert each fraction to a percent.

$\frac{2}{5}$

$40%$

$\frac{7}{8}$

$\frac{1}{8}$

$12.5%$

$\frac{5}{16}$

$15÷22$

$68.18%$

$\frac{2}{11}$

$\frac{2}{9}$

$22.22%$

$\frac{16}{45}$

$\frac{27}{55}$

$49.09%$

$\frac{7}{27}$

15

$1500%$

8

For the following problems, convert each decimal to a percent.

$0.36$

$36%$

$0.42$

$0.446$

$44.6%$

$0.1298$

$4.25$

$425%$

$5.875$

$86.98$

$8698%$

$21.26$

14

$1400%$

12

For the following problems, convert each percent to a decimal.

$35%$

$0.35$

$76%$

$18.6%$

$0.186$

$67.2%$

$9.0145%$

$0.090145$

$3.00156%$

$0.00005%$

$0.0000005$

$0.00034%$

what does nano mean?
nano basically means 10^(-9). nanometer is a unit to measure length.
Bharti
do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
absolutely yes
Daniel
how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Abigail
for teaching engĺish at school how nano technology help us
Anassong
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
Tarell
what is the actual application of fullerenes nowadays?
Damian
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
Tarell
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
how to synthesize TiO2 nanoparticles by chemical methods
Zubear
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Please keep in mind that it's not allowed to promote any social groups (whatsapp, facebook, etc...), exchange phone numbers, email addresses or ask for personal information on QuizOver's platform.