<< Chapter < Page Chapter >> Page >

As a consequence of the structure of y, it is easy to see that it can be compressed with the following redundancy,

r | T | ( r - 1 ) 2 log ( n | T | + O ( 1 ) ) + | T | log ( n ) ,

where the new | T | log ( n ) term arises from coding the locations of transitions between segments (states of the tree) in the BWT output. Not only is the BWT convenient for compression, but it is amenable to fast computation. Both the BWT and its inverse can be implemented in O ( n ) time. This combination of great compression and speed has made the BWT quite popular in compressors that have appeared since the late 1990s. For example, the bzip2 archiving package is very popular among network administrators.

That said, from a theoretical perspective the BWT suffers from an extraneous redundancy of | T | log ( n ) bits. Until this gap was resolved, the theoretical community still preferred the semi-predictive method or another approach based on mixtures.

Semi-predictive coding using the bwt

Another approach for using the BWT is to use y only for learning the MDL tree source T * . To do so, note that when the BWT is run, it is possible to track the correspondences between contexts and segments of the BWT output. Therefore, information about per-segment symbol count is available, and can be easily applied to perform the tree pruning procedure that we have seen. Not only that, but some BWT computation algorithms (e.g., suffix tree approaches) maintain this information for all context depths and not just bounded D . In short, the BWT allows to compute the minimizing tree T * in linear time  [link] .

Given the minimizing tree T * , it is not obvious how to determine which state generated each character of y (respectively, x ) in linear time. It has been shown by Martín et al.  [link] that this step can also be performed in linear time by developing a state machine whose states include the leaves of T * . The result is a two part code, where the first part computes the optimal T * via BWT, and the second part actually compresses x by tracking which state of T * generated each of the symbols. To summarize, we have a linear complexity algorithm for compressing and decompressing a source while achieving the redundancy bounds for the class of tree sources.

Context tree weighting

We discussed in [link] for the problem of encoding a transition between two known i.i.d. distributions that

1 n i = 1 n p θ i ( x ) > 1 n max i { p θ i ( x ) } .

Therefore, a mixture over all parameter values yields a greater probability (and thus lower coding length) than the maximizing approach. Keep in mind that finding the optimal MDL tree source T * is analogous to the plug-in approach, and it would reduce the coding length if we could assign the probability as a mixture over all possible trees, where we assign trees with fewer leaves a greater weight. That is, ideally we want to implement

Pr ( x ) = T 2 - | code ( T ) | · p T ( x ) ,

where | code ( T ) | is the length of the encoding procedure that we discussed for the tree structure T , and p T ( x ) is the probability for the sequence x under the model T .

Willems et al. showed how to implement such a mixture in a simple way over the class of tree sources of bounded depth D . As before, the algorithm proceeds in a bottom up manner from leaves toward the root. At leaves, the probability p s assigned to symbols that were generated within that context s is the Krichevsky-Trofimov probability, p K T ( s , x )   [link] . For s that is an internal node whose depth is less than D , the approach by Willems et al.  [link] is to mix ( i ) the probabilities of keeping the branches for 0s and 1s and ( ii ) pruning,

p s = 1 2 p K T ( s , x ) + 1 2 p 0 s · p 1 s .

It can be shown that this simple formula allows to implement a mixture over the class of bounded depth context tree sources, thus reducing the coding length w.r.t. the semi-predictive approach.

In fact, Willems later showed how to extend the context tree weighting (CTW) approach to tree sources of unbounded depth  [link] . Unfortunately, while the basic bounded depth CTW has complexity that is comparable to the BWT, the unboundedCTW has potentially higher complexity.

Questions & Answers

what is mutation
Janga Reply
what is a cell
Sifune Reply
how is urine form
Sifune
what is antagonism?
mahase Reply
classification of plants, gymnosperm features.
Linsy Reply
what is the features of gymnosperm
Linsy
how many types of solid did we have
Samuel Reply
what is an ionic bond
Samuel
What is Atoms
Daprince Reply
what is fallopian tube
Merolyn
what is bladder
Merolyn
what's bulbourethral gland
Eduek Reply
urine is formed in the nephron of the renal medulla in the kidney. It starts from filtration, then selective reabsorption and finally secretion
onuoha Reply
State the evolution relation and relevance between endoplasmic reticulum and cytoskeleton as it relates to cell.
Jeremiah
what is heart
Konadu Reply
how is urine formed in human
Konadu
how is urine formed in human
Rahma
what is the diference between a cavity and a canal
Pelagie Reply
what is the causative agent of malaria
Diamond
malaria is caused by an insect called mosquito.
Naomi
Malaria is cause by female anopheles mosquito
Isaac
Malaria is caused by plasmodium Female anopheles mosquitoe is d carrier
Olalekan
a canal is more needed in a root but a cavity is a bad effect
Commander
what are pathogens
Don Reply
In biology, a pathogen (Greek: πάθος pathos "suffering", "passion" and -γενής -genēs "producer of") in the oldest and broadest sense, is anything that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ. The term pathogen came into use in the 1880s.[1][2
Zainab
A virus
Commander
Definition of respiration
Muhsin Reply
respiration is the process in which we breath in oxygen and breath out carbon dioxide
Achor
how are lungs work
Commander
where does digestion begins
Achiri Reply
in the mouth
EZEKIEL
what are the functions of follicle stimulating harmones?
Rashima Reply
stimulates the follicle to release the mature ovum into the oviduct
Davonte
what are the functions of Endocrine and pituitary gland
Chinaza
endocrine secrete hormone and regulate body process
Achor
while pituitary gland is an example of endocrine system and it's found in the Brain
Achor
what's biology?
Egbodo Reply
Biology is the study of living organisms, divided into many specialized field that cover their morphology, physiology,anatomy, behaviour,origin and distribution.
Lisah
biology is the study of life.
Alfreda
Biology is the study of how living organisms live and survive in a specific environment
Sifune
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Universal algorithms in signal processing and communications. OpenStax CNX. May 16, 2013 Download for free at http://cnx.org/content/col11524/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Universal algorithms in signal processing and communications' conversation and receive update notifications?

Ask