<< Chapter < Page Chapter >> Page >

Connecting the lines


OK, so now we have a (relatively) clean image of the cell’s borders. Can we run an edge detector now you ask…? Hold your horses, Champ, we still have a ways to go…

Although it may make sense to run an edge detector at this point, seeing as we’ve got ourselves an image where the cell borders are definitely distinguishable, there is still a problem. Edge detectors look for changes in the gradient. Since our image was acquired utilizing optical fibers, our cell borders are not really solid lines quite yet; they are merely groups of small dots which, together, make up the cell borders. If an edge detector were utilized at this point, it would pick up each fiber optic probe, rather than the cell border we want. There no need to despair; there is a solution for all this!

Mode filtering

Although it may not be as simple as those connect-the-dots books we’re used to, mode filtering can be an effective method of forming solid cell borders. The basic idea is this: if we used sliding neighborhood operations again, but rather than look for the mean, look for the mode, we may be able to connect all our little dots together! Why is this? Well, the mode filter we implemented works like this:

  • Take a neighborhood of size [N M]
  • Find the mean of the entries in the matrix.
  • Since the image is in black and white, if the mean is greater than .5, then there are more ones, otherwise, there are more zeros. This is basically determining the mode of the neighborhood.
  • Thus, if the mode is 1, set the pixel to 1. If the mode is 0, set the pixel to 0.

How does this connect the lines? Think about this: we want to establish solid cell borders by turning ON the black pixels which are part of the cell’s border. Thus, we want to turn ON black pixels which are near groups of white pixels which make up the cell borders and keep black pixels which are not part of the cell borders (in areas with relatively few white pixels) OFF. Taking the mode of each pixel’s neighborhood will accomplish this since black pixels near large groups of white pixels will be turned on and the following image shows what begins to look like solid cell borders… (Figure 1)

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Detection of cell boundaries in optical fiber probe images. OpenStax CNX. Jan 20, 2008 Download for free at http://cnx.org/content/col10501/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Detection of cell boundaries in optical fiber probe images' conversation and receive update notifications?