<< Chapter < Page Chapter >> Page >

Strategy

Since temperatures are given for the hot and cold reservoirs of this heat engine, Eff C = 1 T c T h size 12{ ital "Eff" rSub { size 8{C} } =1- { {T rSub { size 8{c} } } over {T rSub { size 8{h} } } } } {} can be used to calculate the Carnot (maximum theoretical) efficiency. Those temperatures must first be converted to kelvins.

Solution

The hot and cold reservoir temperatures are given as 300 º C size 12{"300"°C} {} and 27 . 0 º C size 12{"27" "." 0°C} {} , respectively. In kelvins, then, T h = 573 K and T c = 300 K size 12{T rSub { size 8{c} } ="300"" K"} {} , so that the maximum efficiency is

Eff C = 1 T c T h . size 12{ ital "Eff" rSub { size 8{C} } =1 - { {T rSub { size 8{c} } } over {T rSub { size 8{h} } } } } {}

Thus,

Eff C = 1 300 K 573 K = 0 . 476 , or  47 . 6% . alignl { stack { size 12{ ital "Eff" rSub { size 8{C} } =1- { {"300"" K"} over {"573"" K"} } } {} #=0 "." "476"", or ""47" "." 6% "." {} } } {}

Discussion

A typical nuclear power station’s actual efficiency is about 35%, a little better than 0.7 times the maximum possible value, a tribute to superior engineering. Electrical power stations fired by coal, oil, and natural gas have greater actual efficiencies (about 42%), because their boilers can reach higher temperatures and pressures. The cold reservoir temperature in any of these power stations is limited by the local environment. [link] shows (a) the exterior of a nuclear power station and (b) the exterior of a coal-fired power station. Both have cooling towers into which water from the condenser enters the tower near the top and is sprayed downward, cooled by evaporation.

Part a shows a photograph of an operational nuclear power plant in night view. There are dome shaped structures which house radioactive material and vapors are shown to come from two cooling towers. Part b shows a photograph of a coal fired power plant. Several huge cooling towers are shown.
(a) A nuclear power station (credit: BlatantWorld.com) and (b) a coal-fired power station. Both have cooling towers in which water evaporates into the environment, representing Q c size 12{Q rSub { size 8{c} } } {} . The nuclear reactor, which supplies Q h size 12{Q rSub { size 8{h} } } {} , is housed inside the dome-shaped containment buildings. (credit: Robert&Mihaela Vicol, publicphoto.org)

Since all real processes are irreversible, the actual efficiency of a heat engine can never be as great as that of a Carnot engine, as illustrated in [link] (a). Even with the best heat engine possible, there are always dissipative processes in peripheral equipment, such as electrical transformers or car transmissions. These further reduce the overall efficiency by converting some of the engine’s work output back into heat transfer, as shown in [link] (b).

Part a of the diagram shows a combustion engine represented as a circle to compare the efficiency of real and Carnot engines. The hot reservoir is a rectangular section above the circle shown at temperature T sub h. A cold reservoir is shown as a rectangular section below the circle at temperature T sub c. Heat Q sub h enters the heat engine as shown by a bold arrow. For a real engine a small part of it is shown to be expelled as output from the engine shown as a bold arrow leaving the circle and for a Carnot engine larger part of it is shown to leave as work shown by a dashed arrow leaving the circle. The remaining heat is shown to be returned back to the cold reservoir as shown by bold arrow toward it for real engines and comparatively lesser heat is given by the Carnot engine shown by a dashed arrow. Part b of the diagram shows an internal combustion engine represented as a circle to study friction and other dissipative processes in the output mechanisms of a heat engine. The hot reservoir is a rectangular section above the circle shown at temperature T sub h. A cold reservoir is shown as a rectangular section below the circle at temperature T sub c. Heat Q sub h enters the heat engine as shown by a bold arrow, work W is produced as output, shown leaving the system, and the remaining heat Q sub c and Q sub f are returned back to the cold reservoir as shown by bold arrows toward it. Q sub f is heat due to friction. The work done against friction goes as heat Q sub f to the cold reservoir.
Real heat engines are less efficient than Carnot engines. (a) Real engines use irreversible processes, reducing the heat transfer to work. Solid lines represent the actual process; the dashed lines are what a Carnot engine would do between the same two reservoirs. (b) Friction and other dissipative processes in the output mechanisms of a heat engine convert some of its work output into heat transfer to the environment.

Section summary

  • The Carnot cycle is a theoretical cycle that is the most efficient cyclical process possible. Any engine using the Carnot cycle, which uses only reversible processes (adiabatic and isothermal), is known as a Carnot engine.
  • Any engine that uses the Carnot cycle enjoys the maximum theoretical efficiency.
  • While Carnot engines are ideal engines, in reality, no engine achieves Carnot’s theoretical maximum efficiency, since dissipative processes, such as friction, play a role. Carnot cycles without heat loss may be possible at absolute zero, but this has never been seen in nature.

Conceptual questions

Think about the drinking bird at the beginning of this section ( [link] ). Although the bird enjoys the theoretical maximum efficiency possible, if left to its own devices over time, the bird will cease “drinking.” What are some of the dissipative processes that might cause the bird’s motion to cease?

Questions & Answers

what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
cell is the building block of life.
Condoleezza Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics: physics of california. OpenStax CNX. Sep 30, 2013 Download for free at http://legacy.cnx.org/content/col11577/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics: physics of california' conversation and receive update notifications?

Ask