<< Chapter < Page Chapter >> Page >

Section summary

  • An inelastic collision is one in which the internal kinetic energy changes (it is not conserved).
  • A collision in which the objects stick together is sometimes called perfectly inelastic because it reduces internal kinetic energy more than does any other type of inelastic collision.
  • Sports science and technologies also use physics concepts such as momentum and rotational motion and vibrations.

Conceptual questions

What is an inelastic collision? What is a perfectly inelastic collision?

A small pickup truck that has a camper shell slowly coasts toward a red light with negligible friction. Two dogs in the back of the truck are moving and making various inelastic collisions with each other and the walls. What is the effect of the dogs on the motion of the center of mass of the system (truck plus entire load)? What is their effect on the motion of the truck?


A 0.240-kg billiard ball that is moving at 3.00 m/s strikes the bumper of a pool table and bounces straight back at 2.40 m/s (80% of its original speed). The collision lasts 0.0150 s. (a) Calculate the average force exerted on the ball by the bumper. (b) How much kinetic energy in joules is lost during the collision? (c) What percent of the original energy is left?

(a) 86.4 N perpendicularly away from the bumper

(b) 0.389 J

(c) 64.0%

Professional Application

Two manned satellites approaching one another, at a relative speed of 0.250 m/s, intending to dock. The first has a mass of 4 . 00 × 10 3 kg , and the second a mass of 7.50 × 10 3 kg . (a) Calculate the final velocity (after docking) by using the frame of reference in which the first satellite was originally at rest. (b) What is the loss of kinetic energy in this inelastic collision? (c) Repeat both parts by using the frame of reference in which the second satellite was originally at rest. Explain why the change in velocity is different in the two frames, whereas the change in kinetic energy is the same in both.

(a) 0.163 m/s in the direction of motion of the more massive satellite

(b) 81.6 J

(c) 8 . 70 × 10 2 m/s size 12{8 "." "70" times "10" rSup { size 8{ - 2} } `"m/s"} {} in the direction of motion of the less massive satellite, 81.5 J. Because there are no external forces, the velocity of the center of mass of the two-satellite system is unchanged by the collision. The two velocities calculated above are the velocity of the center of mass in each of the two different individual reference frames. The loss in KE is the same in both reference frames because the KE lost to internal forces (heat, friction, etc.) is the same regardless of the coordinate system chosen.

Professional Application

A 30,000-kg freight car is coasting at 0.850 m/s with negligible friction under a hopper that dumps 110,000 kg of scrap metal into it. (a) What is the final velocity of the loaded freight car? (b) How much kinetic energy is lost?

Professional Application

One of the waste products of a nuclear reactor is plutonium-239 ( 239 Pu ) . This nucleus is radioactive and decays by splitting into a helium-4 nucleus and a uranium-235 nucleus ( 4 He + 235 U ) , the latter of which is also radioactive and will itself decay some time later. The energy emitted in the plutonium decay is 8.40 × 10 13 J and is entirely converted to kinetic energy of the helium and uranium nuclei. The mass of the helium nucleus is 6.68 × 10 27 kg , while that of the uranium is 3 . 92 × 10 25 kg size 12{3 "." "92"` times "10" rSup { size 8{ - "25"} } `"kg"} {} (note that the ratio of the masses is 4 to 235). (a) Calculate the velocities of the two nuclei, assuming the plutonium nucleus is originally at rest. (b) How much kinetic energy does each nucleus carry away? Note that the data given here are accurate to three digits only.

Professional Application

The Moon’s craters are remnants of meteorite collisions. Suppose a fairly large asteroid that has a mass of 5 . 00 × 10 12 kg size 12{5 "." "00" times 10 rSup { size 8{"12"} } " kg"} {} (about a kilometer across) strikes the Moon at a speed of 15.0 km/s. (a) At what speed does the Moon recoil after the perfectly inelastic collision (the mass of the Moon is 7 . 36 × 10 22 kg size 12{7 "." "36" times 10 rSup { size 8{"22"} } " kg"} {} ) ? (b) How much kinetic energy is lost in the collision? Such an event may have been observed by medieval English monks who reported observing a red glow and subsequent haze about the Moon.

(a) 1 . 02 × 10 6 m/s size 12{1 "." "02" times "10" rSup { size 8{ - 6} } " m/s"} {}

(b) 5 . 63 × 10 20 J size 12{5 "." "63" times "10" rSup { size 8{"20"} } `J} {} (almost all KE lost)

What is the speed of a garbage truck that is 1 . 20 × 10 4 kg size 12{1 "." "20" times "10" rSup { size 8{4} } " kg"} {} and is initially moving at 25.0 m/s just after it hits and adheres to a trash can that is 80.0 kg and is initially at rest?

24.8 m/s

(a) During an ice skating performance, an initially motionless 80.0-kg clown throws a fake barbell away. The clown’s ice skates allow her to recoil frictionlessly. If the clown recoils with a velocity of 0.500 m/s and the barbell is thrown with a velocity of 10.0 m/s, what is the mass of the barbell? (b) How much kinetic energy is gained by this maneuver? (c) Where does the kinetic energy come from?

(a) 4.00 kg

(b) 210 J

(c) The clown does work to throw the barbell, so the kinetic energy comes from the muscles of the clown. The muscles convert the chemical potential energy of ATP into kinetic energy.

Questions & Answers

so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
(a) Find the recoil velocity of a 70.0-kg ice hockey goalie, originally at rest, who catches a 0.150-kg hockey puck slapped at him at a velocity of 35.0 m/s. (b) How much kinetic energy is lost during the collision? Assume friction between the ice and the puck-goalie system is negligible. (Figure 8.9)
Kamal Reply
Calculate the velocities of two objects following an elastic collision, given that m1 = 0.500 kg, m2 = 3.50 kg, v1 = 4.00 m/s, and v2 = 0.
Kamal Reply
Practice Key Terms 2

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Unit 6 - momentum. OpenStax CNX. Jan 22, 2016 Download for free at https://legacy.cnx.org/content/col11961/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Unit 6 - momentum' conversation and receive update notifications?