<< Chapter < Page Chapter >> Page >
This module extends the ideas of the Discrete Fourier Transform (DFT) into two-dimensions, which is necessary for any image processing.

2d dft

To perform image restoration (and many other useful image processing algorithms) in a computer, we need a FourierTransform (FT) that is discrete and two-dimensional.

F k l u 2 k N v 2 l N F u v
for k 0 N 1 and l 0 N 1 .
F u v m n f m n u m v m
F k l m N 1 0 n N 1 0 f m n 2 k m N 2 l n N
where the above equation ( ) has finite support for an N x N image.

Inverse 2d dft

As with our regular fourier transforms, the 2D DFT also has an inverse transform that allows us to reconstruct an imageas a weighted combination of complex sinusoidal basis functions.

f m n 1 N 2 k N 1 0 l N 1 0 F k l 2 k m N 2 l n N

Periodic extensions

Illustrate the periodic extension of images.
Got questions? Get instant answers now!

2d dft and convolution

The regular 2D convolution equation is

g m n k N 1 0 l N 1 0 f k l h m k n l

Below we go through the steps of convolving two two-dimensional arrays. You can think of f as representing an image and h represents a PSF, where h m n 0 for m n 1 and m n 0 . h h 0 0 h 0 1 h 1 0 h 1 1 f f 0 0 f 0 N 1 f N 1 0 f N 1 N 1 Step 1 (Flip h ):

h m n h 1 1 h 1 0 0 h 0 1 h 0 0 0 0 0 0
Step 2 (Convolve):
g 0 0 h 0 0 f 0 0
We use the standard 2D convolution equation ( ) to find the first element of our convolved image. In order to better understand what ishappening, we can think of this visually. The basic idea is to take h m n and place it "on top" of f k l , so that just the bottom-right element, h 0 0 of h m n overlaps with the top-left element, f 0 0 , of f k l . Then, to get the next element of our convolved image, we slide the flipped matrix, h m n , over one element to the right and get the following result: g 0 1 h 0 0 f 0 1 h 0 1 f 0 0 We continue in this fashion to find all of the elements ofour convolved image, g m n . Using the above method we define the general formula to find a particular element of g m n as:
g m n h 0 0 f m n h 0 1 f m n 1 h 1 0 f m 1 n h 1 1 f m 1 n 1

Got questions? Get instant answers now!

Circular convolution

What does H k l F k l produce?

2D Circular Convolution

g ~ m n IDFT H k l F k l circularconvolutionin2D

Got questions? Get instant answers now!

Due to periodic extension by DFT ( ):

Based on the above solution, we will let

g ~ m n IDFT H k l F k l
Using this equation, we can calculate the value for each position on our final image, g ~ m n . For example, due to the periodic extension of the images, when circular convolution is applied we willobserve a wrap-around effect.
g ~ 0 0 h 0 0 f 0 0 h 1 0 f N 1 0 h 0 1 f 0 N 1 h 1 1 f N 1 N 1
Where the last three terms in are a result of the wrap-around effect caused by the presence of the images copies located all around it.

Zero padding

If the support of h is M x M and f is N x N , then we zero pad f and h to M N 1 x M N 1 (see ).

Circular Convolution = Regular Convolution

Computing the 2d dft

F k l m N 1 0 n N 1 0 f m n 2 k m N 2 l n N
where in the above equation, n N 1 0 f m n 2 l n N is simply a 1D DFT over n . This means that we will take the 1D FFT of each row; if wehave N rows, then it will require N N operations per row. We can rewrite this as
F k l m N 1 0 f m l 2 k m N
where now we take the 1D FFT of each column, which means that if we have N columns, then it requires N N operations per column.
Therefore the overall complexity of a 2D FFT is O N 2 N where N 2 equals the number of pixels in the image.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Intro to digital signal processing. OpenStax CNX. Jan 22, 2004 Download for free at http://cnx.org/content/col10203/1.4
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Intro to digital signal processing' conversation and receive update notifications?

Ask