<< Chapter < Page Chapter >> Page >

Arithmetic operations

There are four basic arithmetic operators in .m files:

+ addition

- subtraction

* multiplication

/ division (for matrices, it also means inversion)

The following three operators work on an element-by-element basis:

.* multiplication of two vectors, element-wise

./ division of two vectors, element-wise

.^ raising all the elements of a vector to a power

As an example, to evaluate the expression a 3 + bd 4c size 12{a rSup { size 8{3} } + sqrt { ital "bd"} - 4c} {} , where a = 1 . 2 size 12{a=1 "." 2} {} , b = 2 . 3 size 12{b=2 "." 3} {} , c = 4 . 5 size 12{c=4 "." 5} {} and d = 4 size 12{d=4} {} , type the following commands in the Command Window to get the answer (ans) :






ans =


Note the semicolon after each variable assignment. If the semicolon is omitted, the interpreter echoes back the variable value.

Vector operations

Consider the vectors x = [ x 1 , x 2 , . . . , x n ] size 12{ {}= \[ x rSub { size 8{1} } ,x rSub { size 8{2} } , "." "." "." ,x rSub { size 8{n} } \] } {} and y = [ y 1 , y 2 , . . . , y n ] size 12{ {}= \[ y rSub { size 8{1} } ,y rSub { size 8{2} } , "." "." "." ,y rSub { size 8{n} } \] } {} . The following operations indicate the resulting vectors:

x*.y = [ x 1 y 1 , x 2 y 2 , . . . , x n y n ] size 12{ {}= \[ x rSub { size 8{1} } y rSub { size 8{1} } ,x rSub { size 8{2} } y rSub { size 8{2} } , "." "." "." ,x rSub { size 8{n} } y rSub { size 8{n} } \] } {}

x./y = x 1 y 1 , x 2 y 3 , . . . , x n y n size 12{ {}= left [ { {x rSub { size 8{1} } } over {y rSub { size 8{1} } } } , { {x rSub { size 8{2} } } over {y rSub { size 8{3} } } } , "." "." "." , { {x rSub { size 8{n} } } over {y rSub { size 8{n} } } } right ]} {}

x.^p = x 1 p , x 2 p , . . . , x n p size 12{ {}= left [x rSub { size 8{1} } rSup { size 8{p} } ,x rSub { size 8{2} } rSup { size 8{p} } , "." "." "." ,x rSub { size 8{n} } rSup { size 8{p} } right ]} {}

Note that because the boldfacing of vectors/matrices are not used in .m files, in the notation adopted in this book, no boldfacing of vectors/matrices is shown to retain consistency with .m files.

The arithmetic operators + and – can be used to add or subtract matrices, vectors or scalars. Vectors denote one-dimensional arrays and matrices denote multidimensional arrays. For example,





5 8 10

In this example, the operator + adds the elements of the vectors x and y, element by element, assuming that the two vectors have the same dimension, in this case 1 × 3 size 12{1 times 3} {} or one row with three columns. An error occurs if one attempts to add vectors having different dimensions. The same applies for matrices.

To compute the dot product of two vectors (in other words, i x i y i size 12{ Sum cSub { size 8{i} } {x rSub { size 8{i} } y rSub { size 8{i} } } } {} ), use the multiplication operator ‘*’ as follows:


ans =


Note the single quote after y denotes the transpose of a vector or a matrix.

To compute an element-by-element multiplication of two vectors (or two arrays), use the following operator:

>>x .* y

ans =

4 15 24

That is, x .* y means [ 1 × 4,3 × 5,4 × 6 ] size 12{ \[ 1 times 4,3 times 5,4 times 6 \] } {} = [ 4 15 24 ] size 12{ \[ matrix { 4 {} # "15" {} # "24" \]{} } } {} .

Complex numbers

LabVIEW MathScript supports complex numbers. The imaginary number is denoted with the symbol i or j, assuming that these symbols have not been used any other place in the program. It is critical to avoid such a symbol conflict for obtaining correct outcome. Enter the following and observe the outcomes:

>>z=3 + 4i % note the multiplication sign ‘*’ is not needed after 4

>>conj(z) % computes the conjugate of z

>>angle(z) % computes the phase of z

>>real(z) % computes the real part of z

>>imag(z) % computes the imaginary part of z

>>abs(z) % computes the magnitude of z

One can also define an imaginary number with any other user-specified variables. For example, try the following:




Array indexing

In .m files, all arrays (vectors) are indexed starting from 1 − in other words, x(1) denotes the first element of the array x. Note that the arrays are indexed using parentheses (.) and not square brackets [.], as done in C/C++. To create an array featuring the integers 1 through 6 as elements, enter:

Questions & Answers

do you think it's worthwhile in the long term to study the effects and possibilities of nanotechnology on viral treatment?
Damian Reply
absolutely yes
how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
characteristics of micro business
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
fullerene is a bucky ball aka Carbon 60 molecule. It was name by the architect Fuller. He design the geodesic dome. it resembles a soccer ball.
what is the actual application of fullerenes nowadays?
That is a great question Damian. best way to answer that question is to Google it. there are hundreds of applications for buck minister fullerenes, from medical to aerospace. you can also find plenty of research papers that will give you great detail on the potential applications of fullerenes.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, An interactive approach to signals and systems laboratory. OpenStax CNX. Sep 06, 2012 Download for free at http://cnx.org/content/col10667/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'An interactive approach to signals and systems laboratory' conversation and receive update notifications?