# 1.3 Common continuous time signals

 Page 1 / 1
Presents several useful continuous time signals.

## Introduction

Before looking at this module, hopefully you have an idea of what a signal is and what basic classifications and properties a signal canhave. In review, a signal is a function defined with respect to an independent variable. This variable is often timebut could represent any number of things. Mathematically, continuous time analogsignals have continuous independent and dependent variables. This module will describe some useful continuous time analog signals.

## Sinusoids

One of the most important elemental signal that you will deal with is the real-valued sinusoid. In its continuous-timeform, we write the general expression as

$A\cos (\omega t+\phi )$
where $A$ is the amplitude, $\omega$ is the frequency, and $\phi$ is the phase. Thus, the period of the sinusoid is
$T=\frac{2\pi }{\omega }$

## Complex exponentials

As important as the general sinusoid, the complex exponential function will become a critical part of your study of signals and systems. Its general continuous form iswritten as

$Ae^{st}$
where $s=\sigma +j\omega$ is a complex number in terms of $\sigma$ , the attenuation constant, and $\omega$ the angular frequency.

## Unit impulses

The unit impulse function, also known asthe Dirac delta function, is a signal that has infinite height andinfinitesimal width. However, because of the way it is defined, it integrates to one. While this signal is useful for theunderstanding of many concepts, a formal understanding of its definition more involved. The unit impulse is commonly denoted $\delta (t)$ .

More detail is provided in the section on the continuous time impulse function. For now, it suffices to say that this signal is crucially important in the study of continuous signals, as it allows the sifting property to be used in signal representation and signal decomposition.

## Unit step

Another very basic signal is the unit-step function that is defined as

$u(t)=\begin{cases}0 & \text{if t< 0}\\ 1 & \text{if t\ge 0}\end{cases}$

The step function is a useful tool for testing and for defining other signals. For example, whendifferent shifted versions of the step function are multiplied by other signals, one can select a certain portion of thesignal and zero out the rest.

## Common continuous time signals summary

Some of the most important and most frequently encountered signals have been discussed in this module. There are, of course, many other signals of significant consequence not discussed here. As you will see later, many of the other more complicated signals will be studied in terms of those listed here. Especially take note of the complex exponentials and unit impulse functions, which will be the key focus of several topics included in this course.

so some one know about replacing silicon atom with phosphorous in semiconductors device?
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!