# 5.4 Triple integrals  (Page 4/8)

 Page 4 / 8

## Changing the order of integration

As we have already seen in double integrals over general bounded regions, changing the order of the integration is done quite often to simplify the computation. With a triple integral over a rectangular box, the order of integration does not change the level of difficulty of the calculation. However, with a triple integral over a general bounded region, choosing an appropriate order of integration can simplify the computation quite a bit. Sometimes making the change to polar coordinates can also be very helpful. We demonstrate two examples here.

## Changing the order of integration

Consider the iterated integral

$\underset{x=0}{\overset{x=1}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y=0}{\overset{y={x}^{2}}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z={y}^{}}{\int }}f\left(x,y,z\right)dz\phantom{\rule{0.2em}{0ex}}dy\phantom{\rule{0.2em}{0ex}}dx.$

The order of integration here is first with respect to z , then y , and then x . Express this integral by changing the order of integration to be first with respect to x , then z , and then $y.$ Verify that the value of the integral is the same if we let $f\left(x,y,z\right)=xyz.$

The best way to do this is to sketch the region $E$ and its projections onto each of the three coordinate planes. Thus, let

$E=\left\{\left(x,y,z\right)|0\le x\le 1,0\le y\le {x}^{2},0\le z\le y\right\}.$

and

$\underset{x=0}{\overset{x=1}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y=0}{\overset{y={x}^{2}}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z={y}^{2}}{\int }}f\left(x,y,z\right)dz\phantom{\rule{0.2em}{0ex}}dy\phantom{\rule{0.2em}{0ex}}dx=\underset{E}{\iiint }f\left(x,y,z\right)dV.$

We need to express this triple integral as

$\underset{y=c}{\overset{y=d}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z={v}_{1}\left(y\right)}{\overset{z={v}_{2}\left(y\right)}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{x={u}_{1}\left(y,z\right)}{\overset{x={u}_{2}\left(y,z\right)}{\int }}f\left(x,y,z\right)dx\phantom{\rule{0.2em}{0ex}}dz\phantom{\rule{0.2em}{0ex}}dy.$

Knowing the region $E$ we can draw the following projections ( [link] ):

on the $xy$ -plane is ${D}_{1}=\left\{\left(x,y\right)|0\le x\le 1,0\le y\le {x}^{2}\right\}=\left\{\left(x,y\right)|0\le y\le 1,\sqrt{y}\le x\le 1\right\},$

on the $yz$ -plane is ${D}_{2}=\left\{\left(y,z\right)|0\le y\le 1,0\le z\le {y}^{2}\right\},$ and

on the $xz$ -plane is ${D}_{3}=\left\{\left(x,z\right)|0\le x\le 1,0\le z\le {x}^{2}\right\}.$

Now we can describe the same region $E$ as $\left\{\left(x,y,z\right)|0\le y\le 1,0\le z\le {y}^{2},\sqrt{y}\le x\le 1\right\},$ and consequently, the triple integral becomes

$\underset{y=c}{\overset{y=d}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z={v}_{1}\left(y\right)}{\overset{z={v}_{2}\left(y\right)}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{x={u}_{1}\left(y,z\right)}{\overset{x={u}_{2}\left(y,z\right)}{\int }}f\left(x,y,z\right)dx\phantom{\rule{0.2em}{0ex}}dz\phantom{\rule{0.2em}{0ex}}dy=\underset{y=0}{\overset{y=1}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z={x}^{2}}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{x=\sqrt{y}}{\overset{x=1}{\int }}f\left(x,y,z\right)dx\phantom{\rule{0.2em}{0ex}}dz\phantom{\rule{0.2em}{0ex}}dy.$

Now assume that $f\left(x,y,z\right)=xyz$ in each of the integrals. Then we have

$\begin{array}{}\\ \\ \\ \\ \\ \phantom{\rule{1em}{0ex}}\underset{x=0}{\overset{x=1}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y=0}{\overset{y={x}^{2}}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z={y}^{2}}{\int }}xyz\phantom{\rule{0.2em}{0ex}}dz\phantom{\rule{0.2em}{0ex}}dy\phantom{\rule{0.2em}{0ex}}dx\hfill \\ =\underset{x=0}{\overset{x=1}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y=0}{\overset{y={x}^{2}}{\int }}\left[{xy\frac{{z}^{2}}{2}|}_{z=0}^{z={y}^{2}}\right]dy\phantom{\rule{0.2em}{0ex}}dx=\underset{x=0}{\overset{x=1}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y=0}{\overset{y={x}^{2}}{\int }}\left(x\frac{{y}^{5}}{2}\right)dy\phantom{\rule{0.2em}{0ex}}dx=\underset{x=0}{\overset{x=1}{\int }}\left[{x\frac{{y}^{6}}{12}|}_{y=0}^{y={x}^{2}}\right]dx=\underset{x=0}{\overset{x=1}{\int }}\frac{{x}^{13}}{12}dx=\frac{1}{168},\hfill \\ \phantom{\rule{1em}{0ex}}\underset{y=0}{\overset{y=1}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z={y}^{2}}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{x=\sqrt{y}}{\overset{x=1}{\int }}xyz\phantom{\rule{0.2em}{0ex}}dx\phantom{\rule{0.2em}{0ex}}dz\phantom{\rule{0.2em}{0ex}}dy\hfill \\ =\underset{y=0}{\overset{y=1}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z={y}^{2}}{\int }}\left[{yz\frac{{x}^{2}}{2}|}_{\sqrt{y}}^{1}\right]dz\phantom{\rule{0.2em}{0ex}}dy\hfill \\ =\underset{y=0}{\overset{y=1}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z={y}^{2}}{\int }}\left(\frac{yz}{2}-\frac{{y}^{2}z}{2}\right)dz\phantom{\rule{0.2em}{0ex}}dy=\underset{y=0}{\overset{y=1}{\int }}\left[{\frac{y{z}^{2}}{4}-\frac{{y}^{2}{z}^{2}}{4}|}_{z=0}^{z={y}^{2}}\right]dy=\underset{y=0}{\overset{y=1}{\int }}\left(\frac{{y}^{5}}{4}-\frac{{y}^{6}}{4}\right)dy=\frac{1}{168}.\hfill \end{array}$

Write five different iterated integrals equal to the given integral

$\underset{z=0}{\overset{z=4}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y=0}{\overset{y=4-z}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{x=0}{\overset{x=\sqrt{y}}{\int }}f\left(x,y,z\right)dx\phantom{\rule{0.2em}{0ex}}dy\phantom{\rule{0.2em}{0ex}}dz.$

(i) $\underset{z=0}{\overset{z=4}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{x=0}{\overset{x=\sqrt{4-z}}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y={x}^{2}}{\overset{y=4-z}{\int }}f\left(x,y,z\right)dy\phantom{\rule{0.2em}{0ex}}dx\phantom{\rule{0.2em}{0ex}}dz,$ (ii) $\underset{y=0}{\overset{y=4}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z=4-y}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{x=0}{\overset{x=\sqrt{y}}{\int }}f\left(x,y,z\right)dx\phantom{\rule{0.2em}{0ex}}dz\phantom{\rule{0.2em}{0ex}}dy,$ (iii) $\underset{y=0}{\overset{y=4}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{x=0}{\overset{x=\sqrt{y}}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z=4-y}{\int }}f\left(x,y,z\right)dz\phantom{\rule{0.2em}{0ex}}dx\phantom{\rule{0.2em}{0ex}}dy,$ (iv) $\underset{x=0}{\overset{x=2}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y={x}^{2}}{\overset{y=4}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z=4-y}{\int }}f\left(x,y,z\right)dz\phantom{\rule{0.2em}{0ex}}dy\phantom{\rule{0.2em}{0ex}}dx,$ (v) $\underset{x=0}{\overset{x=2}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=0}{\overset{z=4-{x}^{2}}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y={x}^{2}}{\overset{y=4-z}{\int }}f\left(x,y,z\right)dy\phantom{\rule{0.2em}{0ex}}dz\phantom{\rule{0.2em}{0ex}}dx$

## Changing integration order and coordinate systems

Evaluate the triple integral $\underset{E}{\iiint }\sqrt{{x}^{2}+{z}^{2}}dV,$ where $E$ is the region bounded by the paraboloid $y={x}^{2}+{z}^{2}$ ( [link] ) and the plane $y=4.$

The projection of the solid region $E$ onto the $xy$ -plane is the region bounded above by $y=4$ and below by the parabola $y={x}^{2}$ as shown.

Thus, we have

$E=\left\{\left(x,y,z\right)|-2\le x\le 2,{x}^{2}\le y\le 4,\text{−}\sqrt{y-{x}^{2}}\le z\le \sqrt{y-{x}^{2}}\right\}.$

The triple integral becomes

$\underset{E}{\iiint }\sqrt{{x}^{2}+{z}^{2}}dV=\underset{x=-2}{\overset{x=2}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y={x}^{2}}{\overset{y=4}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=\text{−}\sqrt{y-{x}^{2}}}{\overset{z=\sqrt{y-{x}^{2}}}{\int }}\sqrt{{x}^{2}+{z}^{2}}dz\phantom{\rule{0.2em}{0ex}}dy\phantom{\rule{0.2em}{0ex}}dx.$

This expression is difficult to compute, so consider the projection of $E$ onto the $xz$ -plane. This is a circular disc ${x}^{2}+{z}^{2}\le 4.$ So we obtain

$\underset{E}{\iiint }\sqrt{{x}^{2}+{z}^{2}}dV=\underset{x=-2}{\overset{x=2}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y={x}^{2}}{\overset{y=4}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=\text{−}\sqrt{y-{x}^{2}}}{\overset{z=\sqrt{y-{x}^{2}}}{\int }}\sqrt{{x}^{2}+{z}^{2}}dz\phantom{\rule{0.2em}{0ex}}dy\phantom{\rule{0.2em}{0ex}}dx=\underset{x=-2}{\overset{x=2}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=\text{−}\sqrt{4-{x}^{2}}}{\overset{z=\sqrt{4-{x}^{2}}}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y={x}^{2}+{z}^{2}}{\overset{y=4}{\int }}\sqrt{{x}^{2}+{z}^{2}}dy\phantom{\rule{0.2em}{0ex}}dz\phantom{\rule{0.2em}{0ex}}dx.$

Here the order of integration changes from being first with respect to $z,$ then $y,$ and then $x$ to being first with respect to $y,$ then to $z,$ and then to $x.$ It will soon be clear how this change can be beneficial for computation. We have

$\underset{x=-2}{\overset{x=2}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=\text{−}\sqrt{4-{x}^{2}}}{\overset{z=\sqrt{4-{x}^{2}}}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{y={x}^{2}+{z}^{2}}{\overset{y=4}{\int }}\sqrt{{x}^{2}+{z}^{2}}dy\phantom{\rule{0.2em}{0ex}}dz\phantom{\rule{0.2em}{0ex}}dx=\underset{x=-2}{\overset{x=2}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=\text{−}\sqrt{4-{x}^{2}}}{\overset{z=\sqrt{4-{x}^{2}}}{\int }}\left(4-{x}^{2}-{z}^{2}\right)\sqrt{{x}^{2}+{z}^{2}}dz\phantom{\rule{0.2em}{0ex}}dx.$

Now use the polar substitution $x=r\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}\theta ,z=r\phantom{\rule{0.2em}{0ex}}\text{sin}\phantom{\rule{0.2em}{0ex}}\theta ,$ and $dz\phantom{\rule{0.2em}{0ex}}dx=r\phantom{\rule{0.2em}{0ex}}dr\phantom{\rule{0.2em}{0ex}}d\theta$ in the $xz$ -plane. This is essentially the same thing as when we used polar coordinates in the $xy$ -plane, except we are replacing $y$ by $z.$ Consequently the limits of integration change and we have, by using ${r}^{2}={x}^{2}+{z}^{2},$

$\begin{array}{cc}\hfill \underset{x=-2}{\overset{x=2}{\int }}\phantom{\rule{0.2em}{0ex}}\underset{z=\text{−}\sqrt{4-{x}^{2}}}{\overset{z=\sqrt{4-{x}^{2}}}{\int }}\left(4-{x}^{2}-{z}^{2}\right)\sqrt{{x}^{2}+{z}^{2}}dz\phantom{\rule{0.2em}{0ex}}dx& =\underset{\theta =0}{\overset{\theta =2\pi }{\int }}\phantom{\rule{0.2em}{0ex}}\underset{r=0}{\overset{r=2}{\int }}\left(4-{r}^{2}\right)rr\phantom{\rule{0.2em}{0ex}}dr\phantom{\rule{0.2em}{0ex}}d\theta \hfill \\ & =\underset{0}{\overset{2\pi }{\int }}\left[{\frac{4{r}^{3}}{3}-\frac{{r}^{5}}{5}|}_{0}^{2}\right]d\theta =\underset{0}{\overset{2\pi }{\int }}\frac{64}{15}d\theta =\frac{128\pi }{15}.\hfill \end{array}$

Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!