<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Identify the locations and primary secretions involved in the chemical digestion of carbohydrates, proteins, lipids, and nucleic acids
  • Compare and contrast absorption of the hydrophilic and hydrophobic nutrients

As you have learned, the process of mechanical digestion    is relatively simple. It involves the physical breakdown of food but does not alter its chemical makeup. Chemical digestion , on the other hand, is a complex process that reduces food into its chemical building blocks, which are then absorbed to nourish the cells of the body ( [link] ). In this section, you will look more closely at the processes of chemical digestion and absorption.

Digestion and absorption

This diagram identifies the functions of mechanical and chemical digestion and absorption at each organ. Next to each organ, a callout identifies which steps of digestion take place in that particular organ.
Digestion begins in the mouth and continues as food travels through the small intestine. Most absorption occurs in the small intestine.

Chemical digestion

Large food molecules (for example, proteins, lipids, nucleic acids, and starches) must be broken down into subunits that are small enough to be absorbed by the lining of the alimentary canal. This is accomplished by enzymes.

Carbohydrate digestion

The average American diet is about 50 percent carbohydrates, which may be classified according to the number of monomers (subunits) they contain. You should take notes on figure 2 below .

The chemical digestion of starches begins in the mouth and has been reviewed in previous modules. In the small intestine, pancreatic amylase    does the ‘heavy lifting’ for starch and carbohydrate digestion ( [link] ). Amylases break down starches into simple sugars. Three brush border enzymes break up the sugars sucrose, lactose, and maltose into monosaccharides.

Carbohydrate digestion flow chart

This flow chart shows the steps in digestion of carbohydrates. The different levels shown are starch and glycogen, disaccharides and monosaccharides. Under each type of sugar, examples and the enzymes responsible for digestion are listed.
Carbohydrates are broken down into their monomers in a series of steps.

Protein digestion

Proteins are polymers composed of amino acids linked by peptide bonds to form long chains. Digestion reduces them to their constituent amino acids. You usually consume about 15 to 20 percent of your total calorie intake as protein.

The digestion of protein starts in the stomach, where HCl and pepsin break proteins into smaller subunits, which then travel to the small intestine ( [link] ). Chemical digestion in the small intestine is continued by pancreatic enzymes, including chymotrypsin and trypsin , each of which act on specific bonds in amino acid sequences. At the same time, the cells of the brush border secrete enzymes. This results in molecules small enough to enter the bloodstream ( [link] ). Take notes on figure 4 .

Digestion of protein

This diagrams shows the human digestive system and identifies the role of each organ in protein digestion. A text call-out next to each organ details the specific function.
The digestion of protein begins in the stomach and is completed in the small intestine.

Digestion of protein flow chart

This flow chart shows the different steps in the digestion of protein. The four steps shown are protein, large polypeptides, short peptides and amino acids and amino acids.
Proteins are successively broken down into their amino acid components.

Lipid digestion

A healthy diet limits lipid intake to 35 percent of total calorie intake. The most common dietary lipids are triglycerides, which are made up of a glycerol molecule bound to three fatty acid chains. Small amounts of dietary cholesterol and phospholipids are also consumed.

The lipase primarily responsible for lipid digestion is pancreatic lipase    . However, because the pancreas is the only consequential source of lipase, virtually all lipid digestion occurs in the small intestine. Pancreatic lipase breaks down each triglyceride into subunits called free fatty acids and monoglycerides .

Questions & Answers

so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Digestive system. OpenStax CNX. Feb 23, 2015 Download for free at http://legacy.cnx.org/content/col11761/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Digestive system' conversation and receive update notifications?

Ask