<< Chapter < Page Chapter >> Page >

Một cách tổng quát, một hệ điều khiển tốt sẽ phải rất nhạy đối với sự biến đổi của các thông số này để có thể giữ vững đáp ứng ra.

Xem lại hệ thống ở (H.1_9). Ta xem G như là một thông số có thể thay đổi. Độ nhạy toàn hệ thống được định nghĩa như sau:

S G M = δM / M δ G / G size 12{ { size 24{S} } rSub { size 8{G} } rSup { size 8{M} } = { {δM/M} over {δ`G/G} } } {} (1.3)

M: độ lợi toàn hệ thống.

Trong đó: M chỉ sự thay đổi thêm của M

G.M/M và G/G chỉ phần trăm thay đổi của M và G. Ta có:

S G M = δM δ G G M = 1 1 + GH size 12{ { size 24{S} } rSub { size 8{G} } rSup { size 8{M} } = { {δM} over {δ`G} } { {G} over {M} } = { {1} over {1+ ital "GH"} } } {} (1.4)

Hệ thức này chứng tỏ hàm độ nhạy có thể làm nhỏ tuỳ ý bằng cách tăng GH, miễn sao hệ thống vẫn giữ được sự ổn định.

Trong một hệ vòng hở, độ lợi của nó sẽ đáp ứng kiểu một - đối - một đối với sự biến thiên của G.

Một cách tổng quát, độ nhạy toàn hệ thống của một hệ hồi tiếp đối với những biến thiên của thông số thì tuỳ thuộc vào nơi của thông số đó. Người đọc có thể khai triển độ nhạy của hệ thống (H.1_9) theo sự biến thiên của H.

d) Hiệu quả hồi tiếp đối với nhiễu phá rối từ bên ngoài.

Trong suốt thời gian hoạt động, các hệ thống điều khiển vật lý chịu sự phá rối của vài loại nhiễu từ bên ngoài. Thí dụ, nhiễu nhiệt (thermal noise) trong các mạch khuếch đại điện tử, nhiễu do tia lửa điện sinh từ chổi và cổ góp trong các động cơ điện …

Hiệu quả của hồi tiếp đối với nhiễu thì tuỳ thuộc nhiều vào nơi mà nhiễu tác động vào hệ thống. Không có kết luận tổng quát nào. Tuy nhiên, trong nhiều vị trí, hồi tiếp có thể giảm thiểu hậu quả của nhiễu.

Xem hệ thống ở (H.1_11)

Ouput của hệ có thể được xác định bằng nguyên lý chồng chất (super position)

C = G 1 . G 2 . e + G 2 . n size 12{C=G rSub { size 8{1} } "." G rSub { size 8{2} } "." e+G rSub { size 8{2} } "." n} {} (1 - 5)- Nếu không có hồi tiếp, H = 0 thì output

Ở đó e = r

Tỷ số tín hiệu trên nhiễu (signal to noise ratio) được định nghĩa:

S N = output do tín hi eu output do nhieu = G 1 G 2 e G 2 n = G 1 . e n size 12{ { {S} over {N} } = { { ital "output"` ital "do"` ital "tín"` ital "hi"eu} over { ital "output"` ital "do"` ital "nhieu"} } = { {G rSub { size 8{1} } G rSub { size 8{2} } e} over {G rSub { size 8{2} } n} } =G rSub { size 8{1} } "." { {e} over {n} } } {} (1.6)

Để tăng tỷ số S/N hiển nhiên là phải tăng G1 hoặc e/n. Sự thay đổi G2 không ảnh hưởng đến tỷ số.

- Nếu có hồi tiếp, output của hệ thống khi r và n tác động đồng thời sẽ là :

G 2 1 + G 1 G 2 H C = G 1 G 2 1 + G 1 G 2 H r + n size 12{C= { {G rSub { size 8{1} } G rSub { size 8{2} } } over {1+G rSub { size 8{1} } G rSub { size 8{2} } H} } r+ { {G rSub { size 8{2} } } alignl { stack { { {1+G rSub { size 8{1} } G rSub { size 8{2} } H {} #} over { {} # } } } n} {} (1.7)

So sánh (1.5) và (1.7), ta thấy thành phần do nhiễu của (1.7) bị giảm bởi hệ số 1+ G­1G2 H. Nhưng thành phần do tín hiệu vào cũng bị giảm cùng một lượng.

Tỷ số S/N bây giờ là:

S / N = G 1 G 2 r / ( 1 + G 1 G 2 H ) G 2 n / ( 1 + G 1 G 2 H ) = G 1 r n size 12{S/N= { {G rSub { size 8{1} } G rSub { size 8{2} } " r /" \( 1+G rSub { size 8{1} } G rSub { size 8{2} } " H" \) } over {G rSub { size 8{2} } "n / " \( 1+G rSub { size 8{1} } G rSub { size 8{2} } " H" \) } } =G rSub { size 8{1} } { {r} over {n} } } {} (1.8)

Và cũng bằng như khi không có hồi tiếp. Trong trường hợp này, hồi tiếp không có hiệu quả trực tiếp đối với tỷ số S/N của hệ thống. Tuy nhiên , sự áp dụng hồi tiếp làm nảy ra khả năng làm tăng tỷ số S/N dưới vài điều kiện. Giả sử rằng suất G­1 tăng đến G1’và r đến r’, các thông số khác không thay đổi , output do tín hiệu vào tác độïng riêng (một mình) thì cũng bằng như khi không có hồi tiếp. Nói cách khác ta có :

C n = 0 = G ' 1 G 2 r ' 1 + G ' 1 G 2 H = G 1 G 2 r size 12{C \rline rSub { size 8{n=0} } = { {G' rSub { size 8{1} } G rSub { size 8{2} } r'} over {1+G' rSub { size 8{1} } G rSub { size 8{2} } H} } =G rSub { size 8{1} } G rSub { size 8{2} } r} {} (1.9)

Với sự tăng G1, G1’ output do nhiễu tác đôïng riêng một mình sẽ là:

C r = 0 = G 2 n 1 + G ' 1 G 2 H size 12{C \rline rSub { size 8{r=0} } = { {G rSub { size 8{2} } n} over {1+G' rSub { size 8{1} } G rSub { size 8{2} } H} } } {} (1.10)

Nhỏ hơn so với khi G1 không tăng. Bây giờ tỷ số S/N sẽ la:ø

G 1 G 2 r G 2 n / ( 1 + G' 1 G 2 H ) = G 1 r n ( 1 + G' 1 G 2 H ) size 12{ { {G rSub { size 8{1} } G rSub { size 8{2} } " r "} over {G rSub { size 8{2} } "n / " \( 1+"G'" rSub { size 8{1} } G rSub { size 8{2} } " H" \) } } =G rSub { size 8{1} } { {r} over {n} } \( 1+"G'" rSub { size 8{1} } G rSub { size 8{2} } " H" \) } {} (1.11).

Nhận thấy nó lớn hơn hệ thống không hồi tiếp bởi hệ số (1+ G1’G2H)

Một cách tổng quát, hồi tiếp cũng gây hiệu quả trên các tính chất của hệ thống, như độ rộng dãy tần, tổng trơ,û đáp ứng quá độ ( Transient Response) và đáp ứng tần số.

Các loại hệ thống điều khiển tự động.

Có nhiều cách phân loại hệ thống điều khiển.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Cơ sở tự động học. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10756/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Cơ sở tự động học' conversation and receive update notifications?

Ask