<< Chapter < Page Chapter >> Page >

CẤU TẠO CƠ BẢN CỦA BJT.

Transistor lưỡng cực gồm có hai mối P-N nối tiếp nhau, được phát minh năm 1947 bởi hai nhà bác học W.H.Britain và J.Braden, được chế tạo trên cùng một mẫu bán dẫn Germanium hay Silicium.

Cực phátEEmitterB Cực nền (Base)n+ pn-Cực thuCCollecterECBTransistor PNPCực phátEEmitterB Cực nền (Base)p+ np-Cực thuCCollecterECBTransistor NPNHình 1Hình sau đây mô tả cấu trúc của hai loại transistor lưỡng cực PNP và NPN.

Ta nhận thấy rằng, vùng phát E được pha đậm (nồng độ chất ngoại lai nhiều), vùng nền B được pha ít và vùng thu C lại được pha ít hơn nữa. Vùng nền có kích thước rất hẹp (nhỏ nhất trong 3 vùng bán dẫn), kế đến là vùng phát và vùng thu là vùng rộng nhất. Transistor NPN có đáp ứng tần số cao tốt hơn transistor PNP. Phần sau tập trung khảo sát trên transistor NPN nhưng đối với transistor PNP, các đặc tính cũng tương tự.

Transistor ở trạng thái chưa phân cực.

Ta biết rằng khi pha chất cho (donor) vào thanh bán dẫn tinh khiết, ta được chất bán dẫn loại N. Các điện tử tự do (còn thừa của chất cho) có mức năng lượng trung bình ở gần dải dẫn điện (mức năng lượng Fermi được nâng lên). Tương tự, nếu chất pha là chất nhận (acceptor), ta có chất bán dẫn loại P. Các lỗ trống của chất nhận có mức năng lượng trung bình nằm gần dải hoá trị hơn (mức năng lượng Fermi giảm xuống).

Khi nối P-N được xác lập, một rào điện thế sẽ được tạo ra tại nối. Các điện tử tự do trong vùng N sẽ khuếch tán sang vùng P và ngược lại, các lỗ trống trong vùng P khuếch tán sang vùng N. Kết quả là tại hai bên mối nối, bên vùng N là các ion dương, bên vùng P là các ion âm. Chúng đã tạo ra rào điện thế.

Hiện tượng này cũng được thấy tại hai nối của transistor. Quan sát vùng hiếm, ta thấy rằng kích thước của vùng hiếm là một hàm số theo nồng độ chất pha. Nó rộng ở vùng chất pha nhẹ và hẹp ở vùng chất pha đậm.

n+Vùng phátMức Fermi tăng caopVùng nềnn-Vùng thuVùng hiếmMức Fermi giảmMức Fermi tăng nhẹn+ Vùng phátp Vùng nềnn- Vùng thuDải dẫn điệnDải hoá trịE(eV)Mức Fermi xếp thẳngDải hoá trị (valence band)Dải dẫn điện(Conductance band)Hình 2Hình sau đây mô tả vùng hiếm trong transistor NPN, sự tương quan giữa mức năng lượng Fermi, dải dẫn điện, dải hoá trị trong 3 vùng, phát nền, thu của transistor.

Cơ chế hoạt động của transistor lưỡng cực.

Trong ứng dụng thông thường (khuếch đại), nối phát nền phải được phân cực thuận trong lúc nối thu nền phải được phân cực nghịch.

Vì nối phát nền được phân cực thuận nên vùng hiếm hẹp lại. Nối thu nền được phân cực nghịch nên vùng hiếm rộng ra.

Nhiều điện tử từ cực âm của nguồn VEE đi vào vùng phát và khuếch tán sang vùng nền. Như ta đã biết, vùng nền được pha tạp chất ít và rất hẹp nên số lỗ trống không nhiều, do đó lượng lỗ trống khuếch tán sang vùng phát không đáng kể.

Hình 3n+Phân cực thuậnpn-Phân cực nghịchDòng điện tửIEICIBDòng điện tửVEEVCCRERCMạch phân cực như sau:

Do vùng nền hẹp và ít lỗ trống nên chỉ có một ít điện tử khuếch tán từ vùng phát qua tái hợp với lỗ trống của vùng nền. Hầu hết các điện tử này khuếch tán thẳng qua vùng thu và bị hút về cực dương của nguồn VCC.

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Mạch điện tử. OpenStax CNX. Aug 07, 2009 Download for free at http://cnx.org/content/col10892/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Mạch điện tử' conversation and receive update notifications?

Ask