<< Chapter < Page Chapter >> Page >

The internal degrees of freedom of a protein

The degrees of freedom of a system are a set of parameters that may be varied independently to define the state of the system. For example, the location of a point in the Cartesian 2D plane may be defined as a displacement along the x-axis and a displacement along the y-axis, given as a (x,y) pair. It may also be given as a rotation about the origin by θ degrees and a distance r from the origin, given as a (r,θ) pair. In either case, a point moving freely in a plane has exactly two degrees of freedom.

As mentioned before, the spatial arrangement of the atoms in a protein constitute its conformation. In the PDB coordinate file above, we can see that one obvious way to define a protein conformation is by giving x, y, and z coordinates for each atom, relative to some arbitrary origin. These are not independent degrees of freedom, however, because atoms within a molecule are not allowed to leave the vicinity of their neighboring atoms (if no chemical reaction takes place). Pairs of atoms bonded to each other, for example, are constrained to remain close, so moving one atom causes others connected to it to move in a dependent fashion. In the kinematics terminology, this means that the true, effective or independent number of degrees of freedom is much less than the input space parameters -an (x,y,z) tuple for each atom-. The remainder of this section defines a set of independent degrees of freedom that more readily model how proteins and other organic molecules can actually move.

Bonds and bond length

The atoms in proteins are connected to one another through covalent bonds. Each pair of bonded atoms has a preferred separation distance called the bond length . The bond length can vary slightly with a spring-like vibration, and is thus a degree of freedom, but realistic variations in bond length are so small that most simulations assume it is fixed for any pair of atoms. This is a very common assumption in the literature and reduces the effective degrees of freedom of a protein; the remainder of this module makes this assumption.

Although bond lengths will not be allowed to vary in this work, the presence of bonds is still important because it allows us to represent the connectivity of the protein as an undirected graph data structure, where the atoms are the nodes and the bonds between them are undirected edges. In some cases, it is helpful to artificially break any cycles in the graph, and choose an atom from the interior as an anchor atom. The graph can then be treated as a tree data structure, with the anchor atom as the root.

A protein as a graph data structure

A tree-like representation of protein connectivity, for a very small molecule. Cycles are broken by ignoring one bond in each.

Bond angles

Bond length is an independent degree of freedom given two connected atoms. A set of three atoms bonded in sequence defines another degree of freedom: the angle between the two adjacent bonds. This is, appropriately, referred to as the bond angle . The bond angle can be calculated as the angle between the two vectors corresponding to the bonds from the central atom to each of its neighbors. As a reminder, the angle between two vectors is the inverse cosine of the ratio of the dot product of the vectors to the product of their lengths. Like bond lengths, bond angles tend to be characteristic of the atom types involved, and, with few exceptions, vary little. Thus, like bond lengths, this module considers all bond angles as fixed (again, this is a common assumption).

Questions & Answers

find the 15th term of the geometric sequince whose first is 18 and last term of 387
Jerwin Reply
The given of f(x=x-2. then what is the value of this f(3) 5f(x+1)
virgelyn Reply
hmm well what is the answer
how do they get the third part x = (32)5/4
kinnecy Reply
can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
I'm not sure why it wrote it the other way
I got X =-6
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
is it a question of log
Commplementary angles
Idrissa Reply
im all ears I need to learn
right! what he said ⤴⤴⤴
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Geometric methods in structural computational biology. OpenStax CNX. Jun 11, 2007 Download for free at http://cnx.org/content/col10344/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Geometric methods in structural computational biology' conversation and receive update notifications?