<< Chapter < Page Chapter >> Page >
Five neuron network and the given adjacency matrix

Threshold ( k )

In undirected, unweighted graphs the threshold( k ) is the minimum number of inputs a neuron needs in order to become excited

The excitation map, e(x,k)

  • let X be a subgraph in G :
    x i = 1 if v i X 0 if otherwise
  • Where x is a binary vector representing the presence (1) or absence (0) of a neuron.
    e i ( x , k ) = 1 if ( A d x ) i k 0 if otherwise
  • x is an invariant set if:
    e ( x , k ) = x

Graph theory and cell assemblies

Using tools from graph theory, we are able to link a certain class of Palm's cell assemblies, which we will call a k -assembly, to the closure of a minimal k -core. Using MATLAB, we are able to find a minimal k -core and it's closure allowing us to find a k -assembly in any given network of neurons.

k -cores

k -cores are a concept in graph theory that has been widely used and studied by many graph theorists for locating cohesive subsets in a given graph. A k -core can be defined as:

  • Given graph G , subgraph X is a k -core if every node in X has at lease k neighbors in X . A k -core can be described as minimal if no proper subset of the k -core is also a k -core.
X = { 1 , 2 , 4 } is a minimal 2-core

Algorithms for finding a k -assembly

The closure (the invariant set generated by iterating the e map) of a minimal k -core is a k -assembly

  • One type of cell assembly, we will call a k -assembly, is the closure of a minimal k -core. In order to find these k -assemblies, we needed to develop a method for finding minimal k -cores and their closures in any given network of neurons.

Finding minimal k -cores:

bintprog is a built in MATLAB function that Þnds an optimal solution to binary integer programming problems of the following form:

min x f T x
A x b
x { 0 , 1 } n

bintprog arguments: f , A , b

  • f : coefficients of the variables of the objective functions
  • A , b : Using the threshold inequality we can find A :
    A d x k x 0 ( k I - A d ) x
    bintprog minimizes f T x constrained to A x b . Because x=0 satisfies the inequality we must add an additional constraint
    x 1 + x 2 + . . . + x n 1
    A = k I - A d - 1 - 1 - 1 . . .
    b = 0 0 0 0 - 1

Algorithm examples

bintprog Example

  • Given the following graph, its corresponding adjacency matrix and threshold of k = 2 , bintprog can find a minimal 2-core:
    A d = 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0
  • bintprog arguments:
    f = 1 1 1 1 1 1 A = 2 - 1 0 0 0 - 1 - 1 2 - 1 0 - 1 - 1 0 - 1 2 - 1 - 1 - 1 0 0 - 1 2 - 1 0 0 - 1 - 1 - 1 2 - 1 - 1 - 1 - 1 0 - 1 2 - 1 - 1 - 1 - 1 - 1 - 1 b = 0 0 0 0 0 0 - 1
  • bintprog returns a vector, x , indicating which nodes are in the minimal k -core:
    x = 1 1 0 0 0 1
  • {1,2,6} is the minimal 2-core found by bintprog
  • There are, however, many other minimal k -cores in this set of neurons such as: {3,4,5} and {2,5,6}. Our goal for the future is to find some method that enables bintprog to find all of the minimal k -cores in a given network allowing us to find all of the k -assemblies in that network.

Closure example

We will use the same graph as the previous bintprog example:

  1. Create a subset, x . We will use the minimal 2-core found by bintprog :
  2. Find e 1 ( x , k ) :
    0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 0 0 0 1 = 2 2 2 0 2 2 e 1 ( x , k ) = 1 1 1 0 1 1
    Because e 1 x we must apply e i ( x , k ) again:
    0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 1 = 2 4 3 2 3 4 e 2 ( x , k ) = 1 1 1 1 1 1
    Even though e 2 ( x , k ) x , we can see that because the entire graph is excited, it will keep exciting itself, thus generating an invariant set giving us a k -assembly:
    x = 1 1 1 1 1 1

Finding k -assemblies

bintprog found a minimal 3-core { 5 , 6 , 7 , 15 } in the 15 node graph and then finds that minimal 3-core's closure (a k -assembly).

Future work for finding cell assemblies

In order to find more cell assemblies in any given network of neurons, we have come up with a few methods of finding other minimal k -cores in a network of neurons:

  • Alter the arguments of bintprog
    • We have altered with the coefficients of the objective function where we would increase the value for nodes already found in a previous minimal k -core. This method has, however, proved to be exhaustive in that we must increase the value of the objective coefficients with all possible combinations of nodes of the previously found minimal k -cores to ensure that all the minimal k -cores of any given graph are located.
  • Translate other graph theoretical algorithms to fit minimal k -cores
    • We hope to use algorithms in graph theory for finding other types of subgraphs, such as a maximal clique, and translate them to fit our problem of finding all of the minimal k -cores of any given graph.
  • Use probability in random graphs
    • Using probability may allow us to figure out how many minimal k -cores a given graph may support as well as where they might be, allowing us to constrain other exhaustive methods of finding minimal k -cores.

Conclusion

This module has shown how to translate the problem of finding cell assemblies in a network of neurons into a binary integer programming problem. It has shown a clear connection between cell assemblies and graph theory and also how to find at least one cell assembly in any given network of neurons. Future work for this problem includes how to find more cell assemblies in a network of neurons.

Acknowledgements

I would like to give a big thanks to Dr. Steve Cox and Dr. Illya Hicks for guiding us through our project of finding cell assemblies. Also thanks to the REU students, Karina Aliaga, Shaunak Das, and Diane Taylor who I collaborated with on this project. Lastly I would like to thank NSF and the VIGRE program for funding me under the NSF VIGRE Grant DMS-0240058.

References

1. Hebb, Donald. (1949) The Organization of Behavior. (New York: John Wiley).

2. Palm, Gunther. (1981) Towards a Theory of Cell Assemblies. Biological Cybernetics 39, pp. 181-194.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, The art of the pfug. OpenStax CNX. Jun 05, 2013 Download for free at http://cnx.org/content/col10523/1.34
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'The art of the pfug' conversation and receive update notifications?

Ask