<< Chapter < Page Chapter >> Page >

Data analysis

The basis of analyzing isothermal TGA data involves using the Clausius-Clapeyron relation between vapor pressure (p) and temperature (T), [link] , where ∆H sub is the enthalpy of sublimation and R is the gas constant (8.314 J/K.mol).

Since msub data are obtained from TGA data, it is necessary to utilize the Langmuir equation, [link] , that relates the vapor pressure of a solid with its sublimation rate.

After integrating [link] in log form, substituting in [link] , and consolidating the constants, one obtains the useful equality, [link] .

Hence, the linear slope of a log(m sub T 1/2 ) versus 1/T plot yields ΔH sub . An example of a typical plot and the corresponding ΔH sub value is shown in [link] . In addition, the y intercept of such a plot provides a value for T sub , the calculated sublimation temperature at atmospheric pressure.

Plot of log(m sub T 1/2 ) versus 1/T and the determination of the ΔH sub (112.6 kJ/mol) for Fe(acac) 3 (R 2 = 0.9989). Adapted from B. D. Fahlman and A. R. Barron, Adv. Mater. Optics Electron ., 2000, 10 , 223.

[link] lists the typical results using the TGA method for a variety of metal β -diketonates, while [link] lists similar values obtained for gallium chalcogenide cubane compounds.

Selected thermodynamic data for metal β-diketonate compounds determined from thermogravimetric analysis. Data from B. D. Fahlman and A. R. Barron, Adv. Mater. Optics Electron ., 2000, 10 , 223.
Compound ΔH sub (kJ/mol) ΔS sub (J/K.mol) T sub calc. (°C) Calculated vapor pressure @ 150 °C (Torr)
Al(acac) 3 93 220 150 3.261
Al(tfac) 3 74 192 111 9.715
Al(hfac) 3 52 152 70 29.120
Cr(acac) 3 91 216 148 3.328
Cr(tfac) 3 71 186 109 9.910
Cr(hfac) 3 46 134 69 29.511
Fe(acac) 3 112 259 161 2.781
Fe(tfac) 3 96 243 121 8.340
Fe(hfac) 3 60 169 81 25.021
Co(acac) 3 138 311 170 1.059
Co(tfac) 3 119 295 131 3.319
Co(hfac) 3 73 200 90 9.132
Selected thermodynamic data for gallium chalcogenide cubane compounds determined from thermogravimetric analysis. Data from E. G. Gillan, S. G. Bott, and A. R. Barron, Chem. Mater., 1997, 9 , 3, 796.
Compound ∆H sub (kJ/mol) ∆S sub (J/K. mol) T sub calc. (°C) Calculated vapor pressure @ 150 °C (Torr)
[(Me 3 C)GaS] 4 110 300 94 22.75
[(EtMe 2 C)GaS] 4 124 330 102 18.89
[(Et 2 MeC)GaS] 4 137 339 131 1.173
[(Et 3 C)GaS] 4 149 333 175 0.018
[(Me 3 C)GaSe)] 4 119 305 116 3.668
[(EtMe 2 C)GaSe] 4 137 344 124 2.562
[(Et 2 MeC)GaSe] 4 147 359 136 0.815
[(Et 3 C)GaSe] 4 156 339 189 0.005

A common method used to enhance precursor volatility and corresponding efficacy for CVD applications is to incorporate partially ( [link] b) or fully ( [link] c) fluorinated ligands. As may be seen from [link] this substitution does results in significant decrease in the ΔH sub , and thus increased volatility. The observed enhancement in volatility may be rationalized either by an increased amount of intermolecular repulsion due to the additional lone pairs or that the reduced polarizability of fluorine (relative to hydrogen) causes fluorinated ligands to have less intermolecular attractive interactions.

Determination of sublimation entropy

The entropy of sublimation is readily calculated from the ΔH sub and the calculated T sub data, [link] .

[link] and [link] show typical values for metal β-diketonate compounds and gallium chalcogenide cubane compounds, respectively. The range observed for gallium chalcogenide cubane compounds (ΔS sub = 330 ±20 J/K.mol) is slightly larger than values reported for the metal β-diketonates compounds (ΔS sub = 130 - 330 J/K.mol) and organic compounds (100 - 200 J/K.mol), as would be expected for a transformation giving translational and internal degrees of freedom. For any particular chalcogenide, i.e., [(R)GaS] 4 , the lowest ΔS sub are observed for the Me 3 C derivatives, and the largest ΔS sub for the Et 2 MeC derivatives, see [link] . This is in line with the relative increase in the modes of freedom for the alkyl groups in the absence of crystal packing forces.

Determination of vapor pressure

While the sublimation temperature is an important parameter to determine the suitability of a potential precursor compounds for CVD, it is often preferable to express a compound's volatility in terms of its vapor pressure. However, while it is relatively straightforward to determine the vapor pressure of a liquid or gas, measurements of solids are difficult (e.g., use of the isoteniscopic method) and few laboratories are equipped to perform such experiments. Given that TGA apparatus are increasingly accessible, it would therefore be desirable to have a simple method for vapor pressure determination that can be accomplished on a TGA.

Substitution of [link] into [link] allows for the calculation of the vapor pressure (p) as a function of temperature (T). For example, [link] shows the calculated temperature dependence of the vapor pressure for [(Me 3 C)GaS] 4 . The calculated vapor pressures at 150 °C for metal β-diketonates compounds and gallium chalcogenide cubane compounds are given in [link] and [link] .

A plot of calculated vapor pressure (Torr) against temperature (K) for [(Me 3 C)GaS] 4 . Adapted from E. G. Gillan, S. G. Bott, and A. R. Barron, Chem. Mater., 1997, 9 , 3, 796.

The TGA approach to show reasonable agreement with previous measurements. For example, while the value calculated for Fe(acac) 3 (2.78 Torr @ 113 °C) is slightly higher than that measured directly by the isoteniscopic method (0.53 Torr @ 113 °C); however, it should be noted that measurements using the sublimation bulb method obtained values much lower (8 x 10 -3 Torr @ 113 °C). The TGA method offers a suitable alternative to conventional (direct) measurements of vapor pressure.

Bibliography

  • P. W. Atkins, Physical Chemistry, 5th ed., W. H. Freeman, New York (1994).
  • G. Beech and R. M. Lintonbon, Thermochim. Acta, 1971, 3 , 97.
  • B. D. Fahlman and A. R. Barron, Adv. Mater. Optics Electron ., 2000, 10 , 223.
  • E. G. Gillan, S. G. Bott, and A. R. Barron, Chem. Mater., 1997, 9 , 3, 796.
  • J. O. Hill and J. P. Murray, Rev. Inorg. Chem., 1993, 13 , 125.
  • J. P. Murray, K. J. Cavell and J. O. Hill, Thermochim. Acta, 1980, 36 , 97.
  • M. A. V. Ribeiro da Silva and M. L. C. C. H. Ferrao, J. Chem. Thermodyn., 1994, 26 , 315.
  • R. Sabbah, D. Tabet, S. Belaadi, Thermochim. Acta, 1994, 247 , 193.
  • L. A. Torres-Gomez, G. Barreiro-Rodriquez, and A. Galarza-Mondragon, Thermochim. Acta, 1988, 124 , 229.

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry of electronic materials. OpenStax CNX. Aug 09, 2011 Download for free at http://cnx.org/content/col10719/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry of electronic materials' conversation and receive update notifications?

Ask