<< Chapter < Page Chapter >> Page >

- PAM ( Pulse Amlitude Modulation: Biến điệu biên độ xung ).

- PWM ( Pube Width Mod: Biến điệu độ rộng xung ).

- PPM ( Pulse Position Mod: Biến điệu vị trí xung ).

Biến điệu biên độ xung: pam.

- Hình 6.7 : Vẽ một sóng mang sC(t) một tín hiệu chứa tin s(t) và tín hiệu PAM sm(t). Ở đó ta thấy chỉ có biên độ của xung sóng mang bị thay đổi, còn dạng xung vẫn giữ không đổi.

Nhớ là sm(t) không phải là tích của s(t) với sC(t).

Ta gọi sm(t) trong trường hợp này là PAM đỉnh phẳng ( flat top PAM ) hoặc PAM lấy mẫu tức thời ( Instantanous Sampling PAM )

Hình 6.7: PAM đỉnh phẳng

- Nếu lấy tích của sC(t) và s(t), ta có kết quả là sóng PAM vẽ như hình 6.8. Ở đó, chiều cao các xung không phải là hằng mà thay đổi theo đường cong của s(t). Trường hợp này, ta gọi là PAM lấy mẫu tự nhiên ( Natural Sampling ).

Hình 6.8: PAM lấy mẫu tự nhiên

  • Bây giờ ta lấy biến đổi F của PAM để xác định kênh sóng cần thiết. Trước hết là xem trường hợp của PAM lấy mẫu tự nhiên. Dựa vào định lý lấy mẫu. Khai triển sC(t) thành chuỗi F. Rồi nhân với s(t). Kết quả thu được là 1 tổng gồm nhiều sóng AM với các tần số sóng mang là tần số căn bản và các hoạ tần sC(t) . Xem hình 6.9.

Hình 6.9: Biến đổi F của PAM lấy mẫu tự nhiên

  • Biến đổi F của PAM đỉnh phẳng thì khó tính hơn. Để đơn giản ta xem hệ thống vẽ ở hình 6.10 Lấy mẫu s (t) bằng một chuỗi xung lực lý tưởng. Rồi định dạng mỗi xung lực thành dạng xung như ý muốn, trong trường hợp này là một xung vuông đỉnh phẳng.

Hình 6.10: Mạch tạo ra sóng biến điệu

Biến đổi F của tín hiệu đã lấy mẫu ở ngõ vô của lọc được tìm từ định lý lấy mẫu. Chuỗi F của chuỗi xung lực có những trị Cn bằng nhau với mọi n. Biến đổi F của sóng được lấy mẫu xung lực vẽ ở hình 6.11

Hình 6.11: Biến đổi F của sóng được lấy mẫu xung lực.

Biến đổi F của output của mạch lọc là tích của biến đổi trên đây với hàm chuyển của mạch lọc. Hàm chuyển này được vẽ ở hình 6.12.

Cuối cùng biến đổi của output vẽ ở hình 6.13. Nhớ rằng phần tần số thấp của nó không phải là một phiên bản bị méo của S(f).

Hình 6.12: Hàm chuyễn của mạch lọc

Hình 6.13: Biến đổi F của PAM đỉnh phẳng

Thí dụ 1: Một tín hiệu chứa tin có dạng: s(t) =

sc(t)1T2TtĐược truyền bằng cách dùng PAM. Sóng mang là chuỗi xung tam giác tuần hoàn như hình 6.14. Tìm biến đổi F của sóng biến điệu.

Hình 14: Sóng mang.

Giải:

Ta xem hình 6.10. Output của mạch lấy mẫu bằng xung lực lý tưởng có biến đổi F.

S  (f ) =

Trong đó S(f) là biến đổi F của

. Biến đổi này là một xung như hình vẽ.

Mạch lọc phải thay đổi mỗi xung lực thành một xung tam giác. Đáp ứng xung lực của chúng là một xung tam giác mà biến đổi của nó là:

H(f ) =

Cuối cùng, biến đổi F của sóng PAM được cho bởi tích của S(f).H(f) như hình vẽ 6.15.

Hình 6.15: Biến đổi F của ví dụ 1.

Sự quan sát tổng quát có ý nghĩa về PAM là sóng PAM chiếm tất cả những tần số từ zero đến vô hạn. Như vậy, nó bị xem là không thể truyền có hiệu quả trong không khí cũng như Multiplexing.

Vì phần có ý nghĩa nhất của biến đổi F của sóng PAM nằm xung quanh tần số zero, ta thường dùng AM hoặc FM để gửi sóng PAM. Đó là, ta xem sóng PAM như là tín hiệu chứa tin và nó biến điệu một sóng mang hình sin. Nhưng tại sao ta phải thực hiện một biến điệu kép, mà không truyền tín hiệu gốc bằng AM hoặc FM ? Hãy nhớ là tín hiệu gốc không có dạng Analog liên tục mà là tín hiệu rời rạc.

Questions & Answers

how do you translate this in Algebraic Expressions
linda Reply
why surface tension is zero at critical temperature
Shanjida
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Điều khiển tự động. OpenStax CNX. Jul 31, 2009 Download for free at http://cnx.org/content/col10865/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Điều khiển tự động' conversation and receive update notifications?

Ask