Two algorithms to detect the fundamental frequency of a signal: one in the time domain (Autocorrelation) and one in the frequency domain (Harmonic Product Spectrum / HPS)

Autocorrelation algorithm

Theory

Fundamentally, this algorithm exploits the fact that a periodic signal, even if it is not a pure sine wave, will be similar from one period to the next. This is true even if the amplitude of the signal is changing in time, provided those changes do not occur too quickly.

To detect the pitch, we take a window of the signal, with a length at least twice as long as the longest period that we might detect. In our case, this corresponded to a length of 1200 samples, given a sampling rate of 44,100 KHz.

Using this section of signal, we generate the autocorrelation function r(s) defined as the sum of the pointwise absolute difference between the two signals over some interval, perhaps 600 points.

Graphically, this corresponds to the following:

Intuitively, it should make sense that as the shift value s begins to reach the fundamental period of the signal T, the difference between the shifted signal and the original signal will begin to decrease. Indeed, we can see this in the plot below, in which the autocorrelation function rapidly approaches zero at the fundamental period.

We can detect this value by differentiating the autocorrelation function and then looking for a change of sign, which yields critical points. We then look at the direction of the sign change across points (positive difference to negative), to take only the minima. We then search for the first minimum below some threshold, i.e. the minimum corresponding to the smallest s. The location of this minimum gives us the fundamental period of the windowed portion of signal, from which we can easily determine the frequency using

Fast-autocorrelation

Clearly, this algorithm requires a great deal of computation. First, we generate the autocorrelation function r(s) for some positive range of s. For each value of s, we need to compute the total difference between the shifted signals. Next, we need to differentiate this signal and search for the minimum, finally determining the correct minimum. We must do this for each window.

In generating the r(s) function, we define a domain for s of 0 to 599. This allows for fundamental frequencies between about 50 and 22000 Hz, which works nicely for human voice. However, this does require calculating r(s) 600 times for each window.

Questions & Answers

Do somebody tell me a best nano engineering book for beginners?

Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.

In this morden time nanotechnology used in many field .
1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc
2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc
3- Atomobile -MEMS, Coating on car etc.
and may other field for details you can check at Google

Azam

anybody can imagine what will be happen after 100 years from now in nano tech world

Prasenjit

after 100 year this will be not nanotechnology maybe this technology name will be change .
maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments

Azam

name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world

Prasenjit

how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?

Damian

silver nanoparticles could handle the job?

Damian

not now but maybe in future only AgNP maybe any other nanomaterials

Azam

Hello

Uday

I'm interested in Nanotube

Uday

this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15

Prasenjit

can nanotechnology change the direction of the face of the world

At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.