<< Chapter < Page Chapter >> Page >

If R is the region bounded by the graphs of the functions f ( x ) = x 2 + 5 and g ( x ) = x + 1 2 over the interval [ 1 , 5 ] , find the area of region R .

12 units 2

Got questions? Get instant answers now!

In [link] , we defined the interval of interest as part of the problem statement. Quite often, though, we want to define our interval of interest based on where the graphs of the two functions intersect. This is illustrated in the following example.

Finding the area of a region between two curves 2

If R is the region bounded above by the graph of the function f ( x ) = 9 ( x / 2 ) 2 and below by the graph of the function g ( x ) = 6 x , find the area of region R .

The region is depicted in the following figure.

This figure is has two graphs in the first quadrant. They are the functions f(x) = 9-(x/2)^2 and g(x)= 6-x. In between these graphs, an upside down parabola and a line, is a shaded region, bounded above by f(x) and below by g(x).
This graph shows the region below the graph of f ( x ) and above the graph of g ( x ) .

We first need to compute where the graphs of the functions intersect. Setting f ( x ) = g ( x ) , we get

f ( x ) = g ( x ) 9 ( x 2 ) 2 = 6 x 9 x 2 4 = 6 x 36 x 2 = 24 4 x x 2 4 x 12 = 0 ( x 6 ) ( x + 2 ) = 0.

The graphs of the functions intersect when x = 6 or x = −2 , so we want to integrate from −2 to 6 . Since f ( x ) g ( x ) for −2 x 6 , we obtain

A = a b [ f ( x ) g ( x ) ] d x = −2 6 [ 9 ( x 2 ) 2 ( 6 x ) ] d x = −2 6 [ 3 x 2 4 + x ] d x = [ 3 x x 3 12 + x 2 2 ] | −2 6 = 64 3 .

The area of the region is 64 / 3 units 2 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

If R is the region bounded above by the graph of the function f ( x ) = x and below by the graph of the function g ( x ) = x 4 , find the area of region R .

3 10 unit 2

Got questions? Get instant answers now!

Areas of compound regions

So far, we have required f ( x ) g ( x ) over the entire interval of interest, but what if we want to look at regions bounded by the graphs of functions that cross one another? In that case, we modify the process we just developed by using the absolute value function.

Finding the area of a region between curves that cross

Let f ( x ) and g ( x ) be continuous functions over an interval [ a , b ] . Let R denote the region between the graphs of f ( x ) and g ( x ) , and be bounded on the left and right by the lines x = a and x = b , respectively. Then, the area of R is given by

A = a b | f ( x ) g ( x ) | d x .

In practice, applying this theorem requires us to break up the interval [ a , b ] and evaluate several integrals, depending on which of the function values is greater over a given part of the interval. We study this process in the following example.

Finding the area of a region bounded by functions that cross

If R is the region between the graphs of the functions f ( x ) = sin x and g ( x ) = cos x over the interval [ 0 , π ] , find the area of region R .

The region is depicted in the following figure.

This figure is has two graphs. They are the functions f(x) = sinx and g(x)= cosx. They are both periodic functions that resemble waves. There are two shaded areas between the graphs. The first shaded area is labeled “R1” and has g(x) above f(x). This region begins at the y-axis and stops where the curves intersect. The second region is labeled “R2” and begins at the intersection with f(x) above g(x). The shaded region stops at x=pi.
The region between two curves can be broken into two sub-regions.

The graphs of the functions intersect at x = π / 4 . For x [ 0 , π / 4 ] , cos x sin x , so

| f ( x ) g ( x ) | = | sin x cos x | = cos x sin x .

On the other hand, for x [ π / 4 , π ] , sin x cos x , so

| f ( x ) g ( x ) | = | sin x cos x | = sin x cos x .

Then

A = a b | f ( x ) g ( x ) | d x = 0 π | sin x cos x | d x = 0 π / 4 ( cos x sin x ) d x + π / 4 π ( sin x cos x ) d x = [ sin x + cos x ] | 0 π / 4 + [ cos x sin x ] | π / 4 π = ( 2 1 ) + ( 1 + 2 ) = 2 2 .

The area of the region is 2 2 units 2 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

If R is the region between the graphs of the functions f ( x ) = sin x and g ( x ) = cos x over the interval [ π / 2 , 2 π ] , find the area of region R .

2 + 2 2 units 2

Got questions? Get instant answers now!

Finding the area of a complex region

Consider the region depicted in [link] . Find the area of R .

This figure is has two graphs in the first quadrant. They are the functions f(x) = x^2 and g(x)= 2-x. In between these graphs is a shaded region, bounded to the left by f(x) and to the right by g(x). All of which is above the x-axis. The region is labeled R. The shaded area is between x=0 and x=2.
Two integrals are required to calculate the area of this region.

As with [link] , we need to divide the interval into two pieces. The graphs of the functions intersect at x = 1 (set f ( x ) = g ( x ) and solve for x ), so we evaluate two separate integrals: one over the interval [ 0 , 1 ] and one over the interval [ 1 , 2 ] .

Over the interval [ 0 , 1 ] , the region is bounded above by f ( x ) = x 2 and below by the x -axis, so we have

A 1 = 0 1 x 2 d x = x 3 3 | 0 1 = 1 3 .

Over the interval [ 1 , 2 ] , the region is bounded above by g ( x ) = 2 x and below by the x -axis, so we have

A 2 = 1 2 ( 2 x ) d x = [ 2 x x 2 2 ] | 1 2 = 1 2 .

Adding these areas together, we obtain

A = A 1 + A 2 = 1 3 + 1 2 = 5 6 .

The area of the region is 5 / 6 units 2 .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Mueller Reply
Leaves accumulate on the forest floor at a rate of 2 g/cm2/yr and also decompose at a rate of 90% per year. Write a differential equation governing the number of grams of leaf litter per square centimeter of forest floor, assuming at time 0 there is no leaf litter on the ground. Does this amount approach a steady value? What is that value?
Abdul Reply
You have a cup of coffee at temperature 70°C, which you let cool 10 minutes before you pour in the same amount of milk at 1°C as in the preceding problem. How does the temperature compare to the previous cup after 10 minutes?
Abdul

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Calculus volume 2. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11965/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 2' conversation and receive update notifications?

Ask