<< Chapter < Page
  Functions   Page 1 / 1
Chapter >> Page >

We have pointed out that a set representing a real situation is not an isolated collection. Sets, in general, overlaps with each other. It is primarily because a set is defined on few characteristics, whereas elements generally can possess many characteristics. Unlike union, which includes all elements from two sets, the intersection between two sets includes only common elements.

Intersection of two sets
The intersection of sets “A” and “B” is the set of all elements common to both “A” and “B”.

The use of word “and” between two sets in defining an intersection is quite significant. Compare it with the definition of union. We used the word “or” between two sets. Pondering on these two words, while deciding membership of union or intersection, is helpful in application situation.

The intersection operation is denoted by the symbol, " ". We can write intersection in set builder form as :

Intersection of two sets

The intersection set consists of elements common to two sets.

A B = { x : x A a n d x B }

Again note use of the word “and” in set builder qualification. We can read this as “x” is an element, which belongs to set “A” and set “B”. Hence, it means that “x” belongs to both “A” and “B”.

In order to understand the operation, let us consider the earlier example again,

A = { 1,2,3,4,5,6 }

B = { 4,5,6,7,8 }

Then,

A B = { 4,5,6 }

On Venn diagram, an intersection is the region intersected by circles, which represent two sets.

Intersection of two sets

The intersection set consists of elements common to two sets.

Interpretation of intersection set

Let us examine the defining set of intersection :

A B = { x : x A a n d x B }

We consider an arbitrary element, say “x”, of the intersection set. Then, we interpret the conditional meaning as :

I f x A B x A a n d x B .

The conditional statement is true in opposite direction as well. Hence,

I f x A a n d x B x A B .

We summarize two statements with two ways arrow as :

x A B x A a n d x B

In addition to two ways relation, there is an interesting aspect of intersection. Intersection is subset of either of two sets. From Venn diagram, it is clear that :

Intersection of two sets

The intersection set consists of elements common to two sets.

A B A

and

A B B

Intersection with a subset

Since all elements of a subset is present in the set, it emerges that intersection with subset is subset. Hence, if “A” is subset of set “B”, then :

B A = A

Intersection of disjoint sets

If no element is common to two sets “A” and “B” , then the resulting intersection is an empty set :

A B = φ

In that case, two sets “A” and “B” are “disjoint” sets.

Multiple intersections

If A 1 , A 2 , A 3 , , A n is a finite family of sets, then their intersections one after another is denoted as :

A 1 A 2 A 3 . A n

Important results

In this section we shall discuss some of the important characteristics/ deductions for the intersection operation.

Idempotent law

The intersection of a set with itself is the set itself.

A A = A

This is because intersection is a set of common elements. Here, all elements of a set is common with itself. The resulting intersection, therefore, is set itself.

Identity law

The intersection with universal set yields the set itself. Hence, universal set functions as the identity of the intersection operator.

A U = A

It is easy to interpret this law. Only the elements in "A" are common to universal set. Hence, intersection, being the set of common elements, is set "A".

Law of empty set

Since empty set is element of all other sets, it emerges that intersection of an empty set with any set is an empty set (empty set is only common element between two sets).

φ A = φ

Commutative law

The order of sets around intersection operator does not change the intersection. Hence, commutative property holds in the case of intersection operation.

A B = B A

Associative law

The associative property holds with respect to intersection operator.

A B C = A B C

The intersection of sets “A” and “B” on Venn’s diagram is :

Intersection of two sets

The intersection is a set of common elements and shown as colored region.

In turn, the intersection of set “A B” and set “C” is the small region in the center :

Intersection inloving three sets

Intersection of a set with "the intersection set of two sets"

It is easy to visualize that the ultimate intersection is independent of the sequence of operation.

Distributive law

The intersection operator( ) is distributed over union operator ( ) :

A B C = A B A C

We can check out this relation with the help of Venn diagram. For convenience, we have not shown the universal set. In the first diagram on the left, the colored region shows the union of sets “B” and “C” ie. B C . The colored region in the second diagram on the right shows the intersection of set “A” with the union obtained in the first diagram i.e. B C .

Distributive law

Distribution of intersection operator over union operator

We can now interpret the colored region in the second diagram from the point of view of expression on the right hand side of the equation :

A B C = A B A C

The colored region is indeed the union of two intersections : " A B " and " A C " . Thus, we conclude that distributive property holds for "intersection operator over union operator".

In the same manner, we can prove distribution of “union operator over intersection operator” :

A B C = A B A C

Analytical proof

Distributive properties are important and used for practical application. In this section, we shall prove the same in analytical manner. For this, let us consider an arbitrary element “x”, which belongs to set " A B C " :

x A B C

Then, by definition of intersection :

x A a n d x B C

x A a n d x B o r x C

x A a n d x B o r x A a n d x C

x A B o r x A C

x A B o r A C

x A B A C

But, we had started with " A B C " and used its definition to show that “x” belongs to another set. It means that the other set consists of the elements of the first set – at the least. Thus,

A B C A B A C

Similarly, we can start with " A B A C " and reach the conclusion that :

A B A C A B C

If sets are subsets of each other, then they are equal. Hence,

A B C = A B A C

Proceeding in the same manner, we can also prove other distributive property of “union operator over intersection operator” :

A B C = A B A C

Questions & Answers

A golfer on a fairway is 70 m away from the green, which sits below the level of the fairway by 20 m. If the golfer hits the ball at an angle of 40° with an initial speed of 20 m/s, how close to the green does she come?
Aislinn Reply
cm
tijani
what is titration
John Reply
what is physics
Siyaka Reply
A mouse of mass 200 g falls 100 m down a vertical mine shaft and lands at the bottom with a speed of 8.0 m/s. During its fall, how much work is done on the mouse by air resistance
Jude Reply
Can you compute that for me. Ty
Jude
what is the dimension formula of energy?
David Reply
what is viscosity?
David
what is inorganic
emma Reply
what is chemistry
Youesf Reply
what is inorganic
emma
Chemistry is a branch of science that deals with the study of matter,it composition,it structure and the changes it undergoes
Adjei
please, I'm a physics student and I need help in physics
Adjanou
chemistry could also be understood like the sexual attraction/repulsion of the male and female elements. the reaction varies depending on the energy differences of each given gender. + masculine -female.
Pedro
A ball is thrown straight up.it passes a 2.0m high window 7.50 m off the ground on it path up and takes 1.30 s to go past the window.what was the ball initial velocity
Krampah Reply
2. A sled plus passenger with total mass 50 kg is pulled 20 m across the snow (0.20) at constant velocity by a force directed 25° above the horizontal. Calculate (a) the work of the applied force, (b) the work of friction, and (c) the total work.
Sahid Reply
you have been hired as an espert witness in a court case involving an automobile accident. the accident involved car A of mass 1500kg which crashed into stationary car B of mass 1100kg. the driver of car A applied his brakes 15 m before he skidded and crashed into car B. after the collision, car A s
Samuel Reply
can someone explain to me, an ignorant high school student, why the trend of the graph doesn't follow the fact that the higher frequency a sound wave is, the more power it is, hence, making me think the phons output would follow this general trend?
Joseph Reply
Nevermind i just realied that the graph is the phons output for a person with normal hearing and not just the phons output of the sound waves power, I should read the entire thing next time
Joseph
Follow up question, does anyone know where I can find a graph that accuretly depicts the actual relative "power" output of sound over its frequency instead of just humans hearing
Joseph
"Generation of electrical energy from sound energy | IEEE Conference Publication | IEEE Xplore" ***ieeexplore.ieee.org/document/7150687?reload=true
Ryan
what's motion
Maurice Reply
what are the types of wave
Maurice
answer
Magreth
progressive wave
Magreth
hello friend how are you
Muhammad Reply
fine, how about you?
Mohammed
hi
Mujahid
A string is 3.00 m long with a mass of 5.00 g. The string is held taut with a tension of 500.00 N applied to the string. A pulse is sent down the string. How long does it take the pulse to travel the 3.00 m of the string?
yasuo Reply
Who can show me the full solution in this problem?
Reofrir Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Functions. OpenStax CNX. Sep 23, 2008 Download for free at http://cnx.org/content/col10464/1.64
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Functions' conversation and receive update notifications?

Ask