<< Chapter < Page Chapter >> Page >
Systems manipulate signals. There are a few simple systems which will perform simple functions upon signals. Examples include amplification (or attenuation),time-reversal, delay, and differentiation/integration.

Systems manipulate signals, creating output signals derived from their inputs. Why the following are categorized as "simple" willonly become evident towards the end of the course.

Sources

Sources produce signals without having input. We like to think of these as having controllable parameters, like amplitude andfrequency. Examples would be oscillators that produce periodic signals like sinusoids and square waves and noise generatorsthat yield signals with erratic waveforms (more about noise subsequently). Simply writing an expression for the signalsthey produce specifies sources. A sine wave generator might be specified by y t A 2 f 0 t u t , which says that the source was turned on at t 0 to produce a sinusoid of amplitude A and frequency f 0 .

Amplifiers

An amplifier multiplies its input by a constant known as the amplifier gain .

y t G x t

Amplifier

An amplifier.

The gain can be positive or negative (if negative, we would say that the amplifier inverts its input) and its magnitude can be greater than one or less than one. If less than one, the amplifieractually attenuates . A real-world example of an amplifier is your home stereo. You control the gain by turningthe volume control.

Delay

A system serves as a time delay when the output signal equals the input signal at an earlier time.

y t x t τ

Delay

A delay.

Here, τ is the delay. The way to understand this system is to focus on the time origin: The output at time t τ equals the input at time t 0 . Thus, if the delay is positive, the output emerges later thanthe input, and plotting the output amounts to shifting the input plot to the right. The delay can be negative, in whichcase we say the system advances its input. Such systems are difficult to build (they would have toproduce signal values derived from what the input will be ), but we will have occasion to advance signals in time.

Time reversal

Here, the output signal equals the input signal flipped aboutthe time origin.

y t x t

Time reversal

A time reversal system.

Again, such systems are difficult to build, but the notion of time reversal occurs frequently in communications systems.

Mentioned earlier was the issue of whether the ordering of systems mattered. In other words, if we have two systems in cascade, does theoutput depend on which comes first? Determine if the ordering matters for the cascade of an amplifier and a delay and for the cascade of atime-reversal system and a delay.

In the first case, order does not matter; in the second it does. "Delay" means t t τ . "Time-reverse" means t t

Case 1 y t G x t τ , and the way we apply the gain and delay the signalgives the same result.

Case 2 Time-reverse then delay: y t x t τ x t τ . Delay then time-reverse: y t x t τ .

Got questions? Get instant answers now!

Derivative systems and integrators

Systems that perform calculus-like operations on their inputs can produce waveforms significantly different than present inthe input. Derivative systems operate in a straightforward way: A first-derivative system would have the input-outputrelationship y t t x t . Integral systems have the complication that the integral'slimits must be defined. It is a signal theory convention that the elementary integral operation have a lower limit of , and that the value of all signals at t equals zero. A simple integrator would have input-output relation

y t α t x α

Linear systems

Linear systems are a class of systems rather than having a specific input-output relation. Linearsystems form the foundation of system theory, and are the most important class of systems in communications. They have theproperty that when the input is expressed as a weighted sum of component signals, the output equals the same weighted sum ofthe outputs produced by each component. When S · is linear,

S G 1 x 1 t G 2 x 2 t G 1 S x 1 t G 2 S x 2 t
for all choices of signals and gains.

This general input-output relation property can be manipulated to indicate specific properties shared by all linear systems.

  • S G x t G S x t The colloquialism summarizing this property is "Double the input, you double the output." Note that this property isconsistent with alternate ways of expressing gain changes: Since 2 x t also equals x t x t , the linear system definition provides the same output nomatter which of these is used to express a given signal.
  • S 0 0 If the input is identically zero for all time , the output of a linear system must be zero. This property follows from the simple derivation S 0 S x t x t S x t S x t 0 .
Just why linear systems are so important is related not only to their properties, which are divulged throughout thiscourse, but also because they lend themselves to relatively simple mathematical analysis. Said another way, "They'rethe only systems we thoroughly understand!"

We can find the output of any linear system to a complicated input by decomposing the input into simple signals. The equation above says that when a system is linear, its output to a decomposedinput is the sum of outputs to each input. For example, if x t t 2 f 0 t the output S x t of any linear system equals y t S t S 2 f 0 t

Time-invariant systems

Systems that don't change their input-output relation with time are said to be time-invariant. The mathematical way ofstating this property is to use the signal delay concept described in Simple Systems .

y t S x t y t τ S x t τ
If you delay (or advance) the input, the output is similarly delayed (advanced). Thus, a time-invariant system responds toan input you may supply tomorrow the same way it responds to the same input applied today; today's output is merely delayedto occur tomorrow.

The collection of linear, time-invariant systems are the most thoroughly understood systems. Much of the signal processing and system theorydiscussed here concentrates on such systems. For example, electric circuits are, for the most part, linear andtime-invariant. Nonlinear ones abound, but characterizing them so that you can predict their behavior for any input remainsan unsolved problem.

Linear, time-invariant table
Input-Output Relation Linear Time-Invariant
y t t x yes yes
y t t 2 x yes yes
y t t x 2 no yes
y t t x x yes yes
y t x 1 x 2 yes yes
y t x t τ yes yes
y t 2 f t x t yes no
y t x t yes no
y t x 2 t no yes
y t x t no yes
y t m x t b no yes

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Fundamentals of electrical engineering i. OpenStax CNX. Aug 06, 2008 Download for free at http://legacy.cnx.org/content/col10040/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Fundamentals of electrical engineering i' conversation and receive update notifications?

Ask