<< Chapter < Page Chapter >> Page >

Alveolates: dinoflagellates, apicomplexians, and ciliates

A large body of data supports that the alveolates are derived from a shared common ancestor. The alveolates are named for the presence of an alveolus, or membrane-enclosed sac, beneath the cell membrane. The exact function of the alveolus is unknown, but it may be involved in osmoregulation. The alveolates are further categorized into some of the better-known protists: the dinoflagellates, the apicomplexans, and the ciliates.

Dinoflagellates exhibit extensive morphological diversity and can be photosynthetic, heterotrophic, or mixotrophic. Many dinoflagellates are encased in interlocking plates of cellulose. Two perpendicular flagella fit into the grooves between the cellulose plates, with one flagellum extending longitudinally and a second encircling the dinoflagellate ( [link] ). Together, the flagella contribute to the characteristic spinning motion of dinoflagellates. These protists exist in freshwater and marine habitats, and are a component of plankton    , the typically microscopic organisms that drift through the water and serve as a crucial food source for larger aquatic organisms.

The illustration shows two dinoflagellates. The first is walnut-shaped, with a groove around the middle and another perpendicular groove that starts at the middle and extends back. Flagella fit in each groove. The second dinoflagellate is horseshoe-shaped, with the body extending from the wide part of the horseshoe toward the narrow end. Like the first dinoflagellate, this one has two perpendicular grooves, each containing a flagellum.
The dinoflagellates exhibit great diversity in shape. Many are encased in cellulose armor and have two flagella that fit in grooves between the plates. Movement of these two perpendicular flagella causes a spinning motion.

Some dinoflagellates generate light, called bioluminescence    , when they are jarred or stressed. Large numbers of marine dinoflagellates (billions or trillions of cells per wave) can emit light and cause an entire breaking wave to twinkle or take on a brilliant blue color ( [link] ). For approximately 20 species of marine dinoflagellates, population explosions (also called blooms) during the summer months can tint the ocean with a muddy red color. This phenomenon is called a red tide, and it results from the abundant red pigments present in dinoflagellate plastids. In large quantities, these dinoflagellate species secrete an asphyxiating toxin that can kill fish, birds, and marine mammals. Red tides can be massively detrimental to commercial fisheries, and humans who consume these protists may become poisoned.

The breaking wave in this photo is an iridescent blue color.
Bioluminescence is emitted from dinoflagellates in a breaking wave, as seen from the New Jersey coast. (credit: “catalano82”/Flickr)

The apicomplexan protists are so named because their microtubules, fibrin, and vacuoles are asymmetrically distributed at one end of the cell in a structure called an apical complex ( [link] ). The apical complex is specialized for entry and infection of host cells. Indeed, all apicomplexans are parasitic. This group includes the genus Plasmodium , which causes malaria in humans. Apicomplexan life cycles are complex, involving multiple hosts and stages of sexual and asexual reproduction.

Illustration A shows an oval cell that has a narrow end and a wide end. The apical complex is located at the narrow end. The three branches of this complex narrow and join at the apical, or narrow, end of the cell. Illustration b shows the life cycle of Plasmodium, which causes malaria. The plasmodium life cycle begins when a mosquito takes a blood meal and injects Plasmodium into the bloodstream. The Plasmodium enters the liver where it multiplies, and eventually reenters the blood. In the blood it enters the ring stage, so called because the cell is curled into a ring shape. The Ring stage may multiply by mitosis or it may undergo meiosis, forming new 1n gametes of male or female sex types. When a mosquito takes a blood meal from an infected host the gametes are ingested. A smaller gamete sex type, called a microgamete, fertilizes a larger sex type, called a macrogamete, producting a 2n zygote. The zygote undergoes mitosis and differentiation. It enters the saliva where it can be injected into another host, completing the cycle.
(a) Apicomplexans are parasitic protists. They have a characteristic apical complex that enables them to infect host cells. (b) Plasmodium , the causative agent of malaria, has a complex life cycle typical of apicomplexans. (credit b: modification of work by CDC)

Questions & Answers

a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
how did I we'll learn this
Noor Reply
f(x)= 2|x+5| find f(-6)
Prince Reply
f(n)= 2n + 1
Samantha Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Difference between extinct and extici spicies
Amanpreet Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Bmcc 102 - concepts of biology. OpenStax CNX. Aug 11, 2015 Download for free at https://legacy.cnx.org/content/col11856/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Bmcc 102 - concepts of biology' conversation and receive update notifications?

Ask