<< Chapter < Page
  Wiskunde graad 5   Page 1 / 1
Chapter >> Page >

Wiskunde

Getalbegrip, optelling en aftrekking

Aftrekking

Opvoeders afdeling

Memorandum

1.1 (a) 510 (b) 810 (c) 860 (d) 1 400 (e) 1 860

1.2 (a) 800 (b) 300 (c) 2 500 (d) 1 700

2.2

a) 16 00 - 10 000 = 6 000

b) 98 000 - 46 000 = 52 000

c) 642 000 - 23 6000 = 406 000

d) 926 000 - 759 000 = 167 000

e) 2468000 - 1129000 = 1339000

LEERDERS AFDELING

Inhoud

Aktiwiteit: om te bereken deur geselekteerde bewerkings [lu 1.8]

1. Net soos by optelling, kan ons ook baie makliker aftrek deur die getalle af te rond. So skat ons ook sommer wat die antwoord naasteby moet wees. Werk saam met ’n maat. Maak beurte om vir mekaar die antwoorde hardop te sê. Kontroleer die antwoorde met ‘n sakrekenaar. Vra gerus jul opvoeder se hulp waar nodig.

1.1 Trek af deur beide getalle af te rond tot die naaste 10:

a) 567 – 63

b) 901 – 87

c) 885 – 25

d) 1 454 – 49

e) 1 999 – 138

1.2 Rond beide getalle af tot die naaste 100 en trek af:

a) 973 – 214

b) 1 259 – 993

c) 6 048 – 3 512

d) 9 999 – 8 234

2. Kom ons kyk na maniere om die verskil tussen groot getalle te bereken.

2.1 Kan jy nog onthou?

Verduidelik aan ’n maat hoe ons afrond tot die naaste 1 000.

2.2 Voltooi die tabel deur af te rond tot die naaste 1 000:

GETAL 1 GETAL 2 VERSKIL
Bv . 4 386 – 1 274 4 000 1 000 3 000
a) 15 980 – 9 621 .......................... .......................... ..........................
b) 98 102 – 46 147 .......................... .......................... ..........................
c) 642 368 – 236 419 .......................... .......................... ..........................
d) 926 135 – 758 910 .......................... .......................... ..........................
e) 2 468 265 – 1 128 651 .......................... .......................... ..........................

Assessering

Leeruitkomste 1: Die leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.

Assesseringstandaard 1.8: Dit is duidelik wanneer die leerder skat en bereken deur geskikte bewerkings vir die oplossing van probleme te gebruik:

1.8.1 afronding tot die naaste 5, 10, 100 of 1 000;

1.8.2 optel en aftrek van heelgetalle met minstens 5 syfers.

Questions & Answers

a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
how did I we'll learn this
Noor Reply
f(x)= 2|x+5| find f(-6)
Prince Reply
f(n)= 2n + 1
Samantha Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 5. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10993/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 5' conversation and receive update notifications?

Ask