<< Chapter < Page Chapter >> Page >

Uitdaging!

1.1 Maak ’n opname onder jou klasmaats oor wie watter tydskrifte lees en plaas die gegewens in ’n tabel, bv.

Tydskrif Huisgenoot Sarie Rooi Rose Landbouweekblad
Aantal leerders ................. ................ ................. .................

1.2 Stel die inligting deur middel van ’n sirkeldiagram voor.

1.3 Beantwoord die volgende vrae:

a) Watter tydskrif is die gewildste?

b) Watter tydskrif word die minste gelees?

c) Watter tydskrif is JOU gunsteling?

Hoekom?

Aktiwiteit 5:

Om hoofreken te kan doen [lu 1.9]

1. Kom ons kyk of jy op jou vorige hoofrekentoets kan verbeter.

1.1 378 + ............ = 400 1.11 8 5 3 5 size 12{ { { size 8{8} } over { size 8{5} } } - { { size 8{3} } over { size 8{5} } } } {} = ............
1.2 10 004 – 13 = ............ 1.12 2 1 2 3 2 size 12{2 { { size 8{1} } over { size 8{2} } } - { { size 8{3} } over { size 8{2} } } } {} = ............
1.3 16 × 8 × 14 = 8 × ............ × 16 1.13 1 10 size 12{ { { size 8{1} } over { size 8{"10"} } } } {} van 1 m = ............ mm
1.4 9 × ............ = 54 1.14 1 100 size 12{ { { size 8{1} } over { size 8{"100"} } } } {} van 1 m = ............ mm
1.5 ............ × 8 = 56 1.15 (9 × 4) + ............ = 50
1.6 ............ ÷ 7 = 7 1.16 Verdubbel: 309: ............
1.7 ............ ÷ 100 = 12 1.17 Halveer: 507: ............
1.8 4 5 + 3 5 size 12{ { { size 8{4} } over { size 8{5} } } + { { size 8{3} } over { size 8{5} } } } {} = ............ 1.18 4 5 size 12{ { { size 8{4} } over { size 8{5} } } } {} van 550 = ............
1.9 2 8 + 1 4 size 12{ { { size 8{2} } over { size 8{8} } } + { { size 8{1} } over { size 8{4} } } } {} = ............ 1.19 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {} van 480 = ............
1.10 5 6 + 3 6 size 12{ { { size 8{5} } over { size 8{6} } } + { { size 8{3} } over { size 8{6} } } } {} = ............ 1.20 6 7 size 12{ { { size 8{6} } over { size 8{7} } } } {} van 630 = ............

KOPKRAPPER!

Wie is ek?

a) As jy my van 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} aftrek, het jy 3 8 size 12{ { { size 8{3} } over { size 8{8} } } } {}

b) As jy my in sesdes sny, het jy 24 6 size 12{ { { size 8{"24"} } over { size 8{6} } } } {}

c) As jy my verdubbel, het jy 4 1 2 size 12{4 { { size 8{1} } over { size 8{2} } } } {}

d) As jy my halveer, het jy 2 1 12 size 12{2 { { size 8{1} } over { size 8{"12"} } } } {}

  1. As jy 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {} van my bereken, kry jy 12

Aktiwiteit 6:

Om probleme in konteks op te los [lu 1.6.1]

rdeel in groepe van drie. Onthou om die oplossings eers met mekaar te bespreek en dit dan netjies skriftelik te doen.

1. Mev. Mvusi koop 7 meter materiaal. As sy vir elkeen van haar 4 kinders ‘n vrolike kussing vir hul kamers maak, hoeveel meter materiaal kan sy vir elkeen gebruik? (Die kussings is almal ewe groot.) Gee jul antwoord as ‘n breuk.

2. Mnr. Muruvan koop 9 stukke wors wat hy gelykop tussen hom, sy vrou en hul 5 kinders wil verdeel. Watter breuk van die wors sal elkeen kry?

3. Oupa Ben wil graag R30 gelykop tussen sy 4 kleinkinders verdeel. Watter bedrag sal elkeen kry?

Aktiwiteit 7:

Om ‘n sakrekenaar te gebruik om berekeninge te doen [lu 1.10.5]

1. Dit is belangrik dat ons sal weet hoe om gewone breuke op ‘n sakrekenaar in te sleutel. Dit sal ons help om die antwoorde van probleme met breuke sommer in ‘n japtrap te kry!

Het jy geweet?

As jy bv. 5 7 size 12{ { { size 8{5} } over { size 8{7} } } } {} op ’n sakrekenaar wil aandui, moet jy 5 ÷ 7 = insleutel.

1.1 Hoe dui die sakrekenaar die volgende breuke aan? Skryf neer wat jy insleutel.

a) 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {}

b) 6 7 size 12{ { { size 8{6} } over { size 8{7} } } } {}

c) 5 8 size 12{ { { size 8{5} } over { size 8{8} } } } {}

d) 1 12 size 12{ { { size 8{1} } over { size 8{"12"} } } } {}

e) 3 4 size 12{ { { size 8{3} } over { size 8{4} } } } {}

KOPKRAPPER!

Daar is 7 koeie in ’n kamp. Kamp hulle af met 3 draadheinings sodat elkeen alleen in sy eie klein kampie is.

Dui aan waar jy die drade sal span.

Assessering

Leeruitkomstes(LUs)
LU 1
Getalle, Verwerkings en VerwantskappeDie leerder is in staat om getalle en die verwantskappe daarvan te herken, te beskryf en voor te stel, en om tydens probleemoplossing bevoeg en met selfvertroue te tel, te skat, te bereken en te kontroleer.
Assesseringstandaarde(ASe)
Dit is duidelik wanneer die leerder:
1.1 aan- en terugtel in breuke-intervalle;
1.2 verskeie maniere om getalle neer te skryf deur die geskiedenis heen in verskillende kulture (insluitend plaaslik) beskryf en illustreer;
1.3 die volgende getalle herken en voorstel, sodat dit beskryf en vergelyk kan word:
  • gewone breuke tot minstens twaalfdes;
1.5 ekwivalente vorms van die bogenoemde getalle herken en gebruik, insluitend:
  • gewone breuke met noemers wat veelvoude van mekaar is;
1.6 probleme in kontekste oplos, insluitend kontekste wat gebruik kan word om ‘n bewustheid van ander leerareas, asook van menseregte-, sosiale, ekonomiese en omgewingskwessies, te bevorder, soos:
  • finansiële kontekste (insluitend koop en verkoop, wins en verlies, en eenvoudige begrotings);
1.8 deur geskikte bewerkings skat en bereken vir die oplossing van probleme in verband met die volgende te kies en gebruik:
  • optel en aftrek van gewone breuke met dieselfde noemer en heelgetalle met gewone breuke (gemengde breuke);
  • bepaling van breuke van heelgetalle wat ook heelgetalle is;
1.9 hoofberekings uitvoer wat die volgende behels:1.9.1 optelling en aftrekking;1.9.2 vermenigvuldiging van heelgetalle tot minstens 10 x 10;
1.10 ‘n verskeidenheid tegnieke gebruik om sowel skriftelike as hoofberekeninge met heelgetalle te doen, insluitend:
  • afronding en kompensering;
  • gebruik van ‘n sakrekenaar;
1.11 ‘n verskeidenheid strategieë gebruik om oplossings te kontroleer en die redelikheid van oplossings te beoordeel.
LU 2
Patrone, funksies en algebraDie leerder is in staat om patrone en verwantskappe te herken, te beskryf en voor te stel en probleme op te los deur algebraïese taal en vaardighede te gebruik.
Dit is duidelik wanneer die leerder:
2.2 verwantskappe of reëls wat waargeneem is in eie woorde beskryf;
2.4 getalsinne skryf om ‘n probleemsituasie te beskryf, insluitend probleme binne kontekste wat gebruik kan word om ‘n bewustheid van menseregte-, sosiale, ekonomiese, kulturele en omgewingsake te bevorder;
2.6 bepaal, deur bespreking en vergelyking, die ekwivalensie van verskillende beskrywings van dieselfde verwantskap of reël wat soos volg voorgestel word:
  • in vloeidiagramme;
  • met getalsinne.
LU 5
DatahanteringDie leerder is in staat om data te versamel, op te som, voor te stel en krities te ontleed om gevolgtrekkings en voorspellings te maak en om toevallige variasies te interpreteer en te bepaal.
Dit is duidelik wanneer die leerder:
5.3 data organiseer en aanteken deur tellings en tabelle te gebruik;
5.5 ‘n verskeidenheid grafieke teken om data (ongegroepeer) voor te stel en te interpreteer, insluitend:
  • ‘n sirkeldiagram.

Memorandum

AKTIWITEIT 1

1. 1.1 1 8 size 12{ { { size 8{1} } over { size 8{8} } } } {}

1.2 3 12 size 12{ { { size 8{3} } over { size 8{"12"} } } } {} = 1 4 size 12{ { { size 8{1} } over { size 8{4} } } } {}

1.3 3 12 size 12{ { { size 8{3} } over { size 8{"12"} } } } {} = 1 4 size 12{ { { size 8{1} } over { size 8{4} } } } {}

1.4 6 10 size 12{ { { size 8{6} } over { size 8{"10"} } } } {} = 3 5 size 12{ { { size 8{3} } over { size 8{5} } } } {}

1.6 1 3 8 size 12{1 { { size 8{3} } over { size 8{8} } } } {}

AKTIWITEIT 2

1.5 1 5 10 size 12{1 { { size 8{5} } over { size 8{"10"} } } } {} = 1 1 2 size 12{1 { { size 8{1} } over { size 8{2} } } } {}

1.

a) 3 10 size 12{ { { size 8{3} } over { size 8{"10"} } } } {} 2 10 size 12{ { { size 8{2} } over { size 8{"10"} } } } {} 2 10 size 12{ { { size 8{2} } over { size 8{"10"} } } } {} 1 10 size 12{ { { size 8{1} } over { size 8{"10"} } } } {} 1 10 size 12{ { { size 8{1} } over { size 8{"10"} } } } {} 1 10 size 12{ { { size 8{1} } over { size 8{"10"} } } } {}

5. Dit is dieselfde.

  1. 10 ; 5

7. 1.7 21 7.2 20

  • 300 7.4 168

AKTIWITEIT 3

1.1 200 ml

  • 1 500 m

1.3 300 g

1.4 5 6 size 12{ { { size 8{5} } over { size 8{6} } } } {}

1.5 2 500 mm

of 2,5 m

of 2 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} m

AKTIWITEIT 5

1. 1.1 22 1.11 1

1.2 9 991 1.12 1

1.3 14 1.13 100

1.4 6 1.14 10

1.5 7 1.15 14

1.6 49 1.16 618

1.7 1 200 1.17 253 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {}

1.8 1 2 5 size 12{ { { size 8{2} } over { size 8{5} } } } {} 1.18 440

1.9 1 2 size 12{ { { size 8{1} } over { size 8{2} } } } {} + 4 8 size 12{ { { size 8{4} } over { size 8{8} } } } {} 1.19 180

1.10 1 2 6 size 12{ { { size 8{2} } over { size 8{6} } } } {} + 1 1 3 size 12{ { { size 8{1} } over { size 8{3} } } } {} 1.20 540

KOPKRAPPER

a) 1 8 size 12{ { { size 8{1} } over { size 8{8} } } } {}

  1. 4
  2. 2 1 4 size 12{ { { size 8{1} } over { size 8{4} } } } {}
  3. 4 1 6 size 12{ { { size 8{1} } over { size 8{6} } } } {}
  4. 16

AKTIWITEIT 7

1.1 a) 3 size 12{ div } {} 5 = 0,6

  1. 6 size 12{ div } {} 7 = 0,8571428
  2. 5 size 12{ div } {} 8 = 0,625
  3. 1 size 12{ div } {} 12 = 0,0833333
  4. 3 size 12{ div } {} 4 = 0,75

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Wiskunde graad 5. OpenStax CNX. Sep 07, 2009 Download for free at http://cnx.org/content/col10993/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Wiskunde graad 5' conversation and receive update notifications?

Ask