<< Chapter < Page
  Image coding   Page 1 / 1
Chapter >> Page >
This modules introduces human vision on colors, YUV color space, visual sensitivity and color compression strategy.


The human vision system perceives images in colour using receptors on the retina of the eye which respond to threerelatively broad colour bands in the regions of red, green and blue (RGB) in the colour spectrum (red, orange, yellow, green,blue, indigo, violet).

Colours in between these are perceived as different linear combinations of RGB. Hence colour TVs and monitors can formalmost any perceivable colour by controlling the relative intensities of R, G and B light sources. Thus most colourimages which exist in electronic form are fundamentally represented by 3 intensities (R, G and B) at each pictureelement (pel) position.

The numerical values used for these intensities are usually chosen such that equal increments in value result inapproximately equal apparent increases in brightness. In practise this means that the numerical value is approximatelyproportional to the log of the true light intensity (energy of the wave) - this is Weber's Law . Throughout this course, we shall refer to these numerical values as intensities, sincefor compression it is most convenient to use a subjectively linear scale.

The yuv colour space

The eye is much more sensitive to overall intensity (luminance) changes than to colour changes. Usually most of theinformation about a scene is contained in its luminance rather than its colour (chrominance).

This is why black-and-white (monochrome) reproduction was acceptable for photography and TV for many years untiltechnology provided colour reproduction at a sufficient cheap price to make its modest advantages worth having.

The luminance ( Y ) of a pel may be obtained from its RGB components as:

Y 0.3 R 0.6 G 0.1 B
These coefficients are only approximate, and are the values defined in the JPEG Book. In other places values of 0.3 , 0.59 and 0.11 are used.

RGB representations of images are normally defined so that if R G B , the pel is always some shade of gray, and if Y R G B in these cases, the 3 coefficients in should sum to unity.

When Y defines the luminance of a pel, its chrominance is usually defined by U and V such that: U 0.5 B Y

V 0.625 R Y
Note that gray pels will always have U V 0 .

The transformation between RGB and YUV colour spaces is linear and may be achieved by a 3 3 matrix C and its inverse:

where C 0.3 0.6 0.1 -0.15 -0.3 0.45 0.4375 -0.3750 -0.0625 and
where C 1 0 1.6 1 -0.3333 -0.8 1 2 0

Visual sensitivity

Sensitivity of the eye to luminance and chrominance intensity changes.

shows the sensitivity of the eye to luminance ( Y ) and chrominance ( U , V ) components of images. The horizontal scale is spatial frequency, and represents thefrequency of an alternating pattern of parallel stripes with sinusoidally varying intensity. The vertical scale is thecontrast sensitivity of human vision, which is the ratio of the maximum visible range of intensities to the minimumdiscernible peak-to-peak intensity variation at the specified frequency.

In we see that:

  • the maximum sensitivity to Y occurs for spatial frequencies around 5 cycles / degree, which corresponds to striped patterns with a half-period(stripe width) of 1.8 mm at a distance of 1 m (~arm's length).
  • The eye has very little response above 100 cycles / degree, which corresponds to a stripe width of 0.1 mm at 1m. On a standard PC display of width 250 mm, this would require 2500 pels per line! Hence the current SVGAstandard of 1024 768 pels still falls somewhat short of the ideal and is limited by CRT spot size. Modern laptop displays have apel size of about 0.3 mm, but are pleasing to view because the pel edges are so sharp (and there is no flicker).
  • The sensitivity to luminance drops off at low spatial frequencies, showing that we are not very good atestimating absolute luminance levels as long as they do not change with time - the luminance sensitivity to temporal fluctuations (flicker) does notfall off at low spatial frequencies.
  • The maximum chrominance sensitivity is much lower than the maximum luminance sensitivity with blue-yellow( U ) sensitivity being about half of red-green ( V ) sensitivity and about 1 6 of the maximum luminance sensitivity.
  • The chrominance sensitivities fall off above 1 cycle / degree, requiring a much lower spatial bandwidth thanluminance.
We can now see why it is better to convert to the YUV domain before attempting image compression. The U and V components may be sampled at a lower rate than Y (due to narrower bandwidth) and may be quantised more coarsely (due tolower contrast sensitivity).

A colour demonstration on the computer will show this effect.

Colour compression strategy

The 3 RGB samples at each pel are transformed into 3 YUV samples using .

Most image compression systems then subsample the U and V information by 2:1 horizontally and vertically so that there is one U and one V pel for each 2 2 block of Y pels. The subsampled U and V pels are obtained by averaging the four U and V samples, from . The quarter-size U and V subimages are then compressed using the same techniques as the full-size Y image, except that coarser quantisation may be used for U and V , so the total cost of adding colour may only be about 25% increase in bit rate. Sometimes U and V are subsamples 4:1 each way (16:1 total), giving an even lower cost of colour.

From now on we will mostly be considering compression of the monochrome Y image, and assume that similar techniques will be used for the smaller U and V subimages.

Activity masking

A final feature of human vision, which is useful for compression, is that the contrast sensitivity to a givenpattern is reduced in the presence of other patterns (activity) in the same region. This is known as activitymasking.

It is a complicated subject as it depends on the similarity between the given pattern and the background activity. Howeverin general, the higher the variance of the pels in a given region (typically ~ 8 to 16 pels across), the lower is thecontrast sensitivity.

Hence compression schemes which adapt the quantisation to local image activity tend to perform better than those whichuse uniform quantisation.

A computer demonstration will show the effect of reduced sensitivity to quantisation effects when noise is added to animage.

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
is Bucky paper clear?
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Do you know which machine is used to that process?
how to fabricate graphene ink ?
for screen printed electrodes ?
What is lattice structure?
s. Reply
of graphene you mean?
or in general
in general
Graphene has a hexagonal structure
On having this app for quite a bit time, Haven't realised there's a chat room in it.
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
many many of nanotubes
what is the k.e before it land
what is the function of carbon nanotubes?
I'm interested in nanotube
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
I'm interested in Nanotube
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Berger describes sociologists as concerned with
Mueller Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Image coding. OpenStax CNX. Jan 22, 2004 Download for free at http://cnx.org/content/col10206/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Image coding' conversation and receive update notifications?