# 1.1 Human vision

 Page 1 / 1
This modules introduces human vision on colors, YUV color space, visual sensitivity and color compression strategy.

## Colours

The human vision system perceives images in colour using receptors on the retina of the eye which respond to threerelatively broad colour bands in the regions of red, green and blue (RGB) in the colour spectrum (red, orange, yellow, green,blue, indigo, violet).

Colours in between these are perceived as different linear combinations of RGB. Hence colour TVs and monitors can formalmost any perceivable colour by controlling the relative intensities of R, G and B light sources. Thus most colourimages which exist in electronic form are fundamentally represented by 3 intensities (R, G and B) at each pictureelement (pel) position.

The numerical values used for these intensities are usually chosen such that equal increments in value result inapproximately equal apparent increases in brightness. In practise this means that the numerical value is approximatelyproportional to the log of the true light intensity (energy of the wave) - this is Weber's Law . Throughout this course, we shall refer to these numerical values as intensities, sincefor compression it is most convenient to use a subjectively linear scale.

## The yuv colour space

The eye is much more sensitive to overall intensity (luminance) changes than to colour changes. Usually most of theinformation about a scene is contained in its luminance rather than its colour (chrominance).

This is why black-and-white (monochrome) reproduction was acceptable for photography and TV for many years untiltechnology provided colour reproduction at a sufficient cheap price to make its modest advantages worth having.

The luminance ( $Y$ ) of a pel may be obtained from its RGB components as:

$Y=0.3R+0.6G+0.1B$
These coefficients are only approximate, and are the values defined in the JPEG Book. In other places values of $0.3$ , $0.59$ and $0.11$ are used.

RGB representations of images are normally defined so that if $R=G=B$ , the pel is always some shade of gray, and if $Y=R=G=B$ in these cases, the 3 coefficients in should sum to unity.

When $Y$ defines the luminance of a pel, its chrominance is usually defined by $U$ and $V$ such that: $U=0.5(B-Y)$

$V=0.625(R-Y)$
Note that gray pels will always have $U=V=0$ .

The transformation between RGB and YUV colour spaces is linear and may be achieved by a $3\times 3$ matrix $C$ and its inverse:

$\begin{pmatrix}Y\\ U\\ V\\ \end{pmatrix}=C\begin{pmatrix}R\\ G\\ B\\ \end{pmatrix}$
where $C=\begin{pmatrix}0.3 & 0.6 & 0.1\\ -0.15 & -0.3 & 0.45\\ 0.4375 & -0.3750 & -0.0625\\ \end{pmatrix}$ and
$\begin{pmatrix}R\\ G\\ B\\ \end{pmatrix}=C^{(-1)}\begin{pmatrix}Y\\ U\\ V\\ \end{pmatrix}$
where $C^{(-1)}=\begin{pmatrix}1 & 0 & 1.6\\ 1 & -0.3333 & -0.8\\ 1 & 2 & 0\\ \end{pmatrix}$

## Visual sensitivity

shows the sensitivity of the eye to luminance ( $Y$ ) and chrominance ( $U$ , $V$ ) components of images. The horizontal scale is spatial frequency, and represents thefrequency of an alternating pattern of parallel stripes with sinusoidally varying intensity. The vertical scale is thecontrast sensitivity of human vision, which is the ratio of the maximum visible range of intensities to the minimumdiscernible peak-to-peak intensity variation at the specified frequency.

In we see that:

• the maximum sensitivity to $Y$ occurs for spatial frequencies around 5 cycles / degree, which corresponds to striped patterns with a half-period(stripe width) of 1.8 mm at a distance of 1 m (~arm's length).
• The eye has very little response above 100 cycles / degree, which corresponds to a stripe width of 0.1 mm at 1m. On a standard PC display of width 250 mm, this would require 2500 pels per line! Hence the current SVGAstandard of $1024\times 768$ pels still falls somewhat short of the ideal and is limited by CRT spot size. Modern laptop displays have apel size of about 0.3 mm, but are pleasing to view because the pel edges are so sharp (and there is no flicker).
• The sensitivity to luminance drops off at low spatial frequencies, showing that we are not very good atestimating absolute luminance levels as long as they do not change with time - the luminance sensitivity to temporal fluctuations (flicker) does notfall off at low spatial frequencies.
• The maximum chrominance sensitivity is much lower than the maximum luminance sensitivity with blue-yellow( $U$ ) sensitivity being about half of red-green ( $V$ ) sensitivity and about $\frac{1}{6}$ of the maximum luminance sensitivity.
• The chrominance sensitivities fall off above 1 cycle / degree, requiring a much lower spatial bandwidth thanluminance.
We can now see why it is better to convert to the YUV domain before attempting image compression. The $U$ and $V$ components may be sampled at a lower rate than $Y$ (due to narrower bandwidth) and may be quantised more coarsely (due tolower contrast sensitivity).

A colour demonstration on the computer will show this effect.

## Colour compression strategy

The 3 RGB samples at each pel are transformed into 3 YUV samples using .

Most image compression systems then subsample the $U$ and $V$ information by 2:1 horizontally and vertically so that there is one $U$ and one $V$ pel for each $2\times 2$ block of $Y$ pels. The subsampled $U$ and $V$ pels are obtained by averaging the four $U$ and $V$ samples, from . The quarter-size $U$ and $V$ subimages are then compressed using the same techniques as the full-size $Y$ image, except that coarser quantisation may be used for $U$ and $V$ , so the total cost of adding colour may only be about 25% increase in bit rate. Sometimes $U$ and $V$ are subsamples 4:1 each way (16:1 total), giving an even lower cost of colour.

From now on we will mostly be considering compression of the monochrome $Y$ image, and assume that similar techniques will be used for the smaller $U$ and $V$ subimages.

A final feature of human vision, which is useful for compression, is that the contrast sensitivity to a givenpattern is reduced in the presence of other patterns (activity) in the same region. This is known as activitymasking.

It is a complicated subject as it depends on the similarity between the given pattern and the background activity. Howeverin general, the higher the variance of the pels in a given region (typically ~ 8 to 16 pels across), the lower is thecontrast sensitivity.

Hence compression schemes which adapt the quantisation to local image activity tend to perform better than those whichuse uniform quantisation.

A computer demonstration will show the effect of reduced sensitivity to quantisation effects when noise is added to animage.

how do they get the third part x = (32)5/4
can someone help me with some logarithmic and exponential equations.
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
I don't understand what the A with approx sign and the boxed x mean
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
oops. ignore that.
so you not have an equal sign anywhere in the original equation?
Commplementary angles
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
a perfect square v²+2v+_
kkk nice
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
rolling four fair dice and getting an even number an all four dice
Kristine 2*2*2=8
Differences Between Laspeyres and Paasche Indices
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
is it 3×y ?
J, combine like terms 7x-4y
how do you translate this in Algebraic Expressions
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!