<< Chapter < Page Chapter >> Page >

In order to study the statistical fluctuations introduced by the discreteness of charge and matter it is necessary to perform 3D simulations of very large ensembles of hundreds of thousands of devices, rather than a single representative device. Given the increasing number of transistors in modern chips, simulation of very large statistical samples of devices is required to allow statistically rare devices with potentially fatal effects on circuit performance and functionality to be examined. This requires access to significant distributed high performance computing resources, including the UK e-Science National Grid Service , ScotGrid and a wide variety of other resources including Condor pools and campus clusters across partner sites. However, this is not simply another large scale simulation problem, since the commercially sensitive nature of the information and stringent IP protection requirements necessitate fine grained security on access to, and usage of, licensed software; protection of the intellectual property associated with circuit and device designs, data and simulations belonging to industrial partners and key stakeholders.

To this end, the project has developed an infrastructure capable of providing comprehensive security. This includes exploitation of Kerberos for secure global file based access through the Andrews File System; authorization technologies such as PERMIS for definition and enforcement of access policies using centralized attribute authorities such as the Virtual Organisation Membership Service (VOMS), and simple user-oriented access to a project portal through the Internet2 Shibboleth technology using the UK Access Management Federation. Furthermore, the project has identified that a key challenge is in data annotation and management. The simulations that are undertaken can generate large quantities of data and meta-data and the electronics domain unlike other domains does not have agreed standards on data format, rather, the data formats tend to be driven by commercial tool providers.

Total CPU time per VO between 16.11.2006 and 19.3.2009
Total number of submitted jobs per VO between 16.11.2006 and 19.3.2009
nanoCMOS Resource Usage on ScotGrid

Traditionally, due to the computational complexity of 3D device simulation, studies of variability have been based on small ensembles of devices typically up to 200 devices and simulations on much larger scale have hitherto never been undertaken. Simulations of ensembles of up to 100,000+ devices enabled by the grid technology are shedding new light on the impact of atomic structure variation on the behaviour of devices, especially at the extreme limits of device variability. Furthermore, based on these simulations, we have been able to examine the effect of device variability at a simple circuit level and have simulated over 1 million CMOS inverters using random configurations of devices. Figure 3(a) shows the potential and dopant position of a statistically rare device. Figure 3(b) shows the threshold voltage variation as a function of the number of dopants.

Potential/Dopant Distribution for Statistically Rare Device
Threshold Voltage Variation as Function of the Number of Dopant atoms in the transistor

Summary and further workd

The nanoCMOS project has shown the value of e-Research methods in the field of microprocessor circuit design. Use of distributed high performance computing and other dispersed computing resources has allowed for large scale simulations that assist the CMOS design community in managing device variability. The work on nanoCMOS is still progressing and higher level circuit and system design tools are being incorporated into the e-Infrastructure. The systems are being extended in numerous other ways including seamless access to multiple-HPC facilities depending upon user privileges. Optimisation of job submission and management based upon data distribution and security constraints is another area that is currently being investigated. More information on the nanoCMOS project is available at www.nanocmos.ac.uk , or through contacting Prof. Asenov (a.asenov@elec.gla.ac.uk - science related questions) or Prof. Sinnott (r.sinnott@nesc.gla.ac.uk - e-Infrastructure related questions).

Acknowledgements

This work was funded by a grant from the UK Engineering and Physical Sciences Research Council. We gratefully acknowledge their support.

References

Sinnott, R.O. et al. (2006). Meeting the Design Challenges of nanoCMOS Electronics: An Introduction to an EPSRC Pilot Project. UK e-Science All Hands Meeting , Nottingham UK, September.

Reid, D. et al. (2008). Prediction of Random Dopant Induced Threshold Voltage Fluctuations in NanoCMOS Transistors International Conference on Simulation of Semiconductor Processes and Devices , Sept.

Questions & Answers

can someone help me with some logarithmic and exponential equations.
Jeffrey Reply
sure. what is your question?
ninjadapaul
20/(×-6^2)
Salomon
okay, so you have 6 raised to the power of 2. what is that part of your answer
ninjadapaul
I don't understand what the A with approx sign and the boxed x mean
ninjadapaul
it think it's written 20/(X-6)^2 so it's 20 divided by X-6 squared
Salomon
I'm not sure why it wrote it the other way
Salomon
I got X =-6
Salomon
ok. so take the square root of both sides, now you have plus or minus the square root of 20= x-6
ninjadapaul
oops. ignore that.
ninjadapaul
so you not have an equal sign anywhere in the original equation?
ninjadapaul
Commplementary angles
Idrissa Reply
hello
Sherica
im all ears I need to learn
Sherica
right! what he said ⤴⤴⤴
Tamia
what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Kim
The answer is neither. The function, 2 = 0 cannot exist. Hence, the function is undefined.
Al
y=10×
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
yes
Asali
I'm not good at math so would you help me
Samantha
what is the problem that i will help you to self with?
Asali
how do you translate this in Algebraic Expressions
linda Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Research in a connected world. OpenStax CNX. Nov 22, 2009 Download for free at http://cnx.org/content/col10677/1.12
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Research in a connected world' conversation and receive update notifications?

Ask