<< Chapter < Page Chapter >> Page >

About prealgebra

The core of Prealgebra is a textbook for a one-semester course that serves as a bridge between arithmetic and algebra. The basic philosophy of this book is to strengthen students’ arithmetic skills and introduce the fundamental concepts and vocabulary of algebra in a nurturing, non-threatening environment while addressing the needs of students with diverse backgrounds and learning styles.

Students who are taking Basic Mathematics and Prealgebra classes in college present a unique set of challenges. Many students in these classes have been unsuccessful in their prior math classes. They may think they know some math, but their core knowledge is full of holes. Furthermore, these students need to learn much more than the course content. They need to learn study skills, time management, and how to deal with math anxiety. Some students lack basic reading and arithmetic skills. Prealgebra a could readily be used in courses named Basic Mathematics or Introductory Algebra. The organization of Prealgebra makes it easy to adapt the book to suit a variety of course syllabi.

Coverage and scope

Openstax Prealgebra follows a nontraditional approach in its presentation of content. The beginning, in particular, is presented as a sequence of small steps so that students gain confidence in their ability to succeed in the course. The order of topics was carefully planned to emphasize the logical progression throughout the course and to facilitate a thorough understanding of each concept. As new ideas are presented, they are explicitly related to previous topics.

  • Chapter 1: Whole Numbers

    Each of the four basic operations with whole numbers–addition, subtraction, multiplication, and division–is modeled and explained. As each operation is covered, discussions of algebraic notation and operation signs, translation of algebraic expressions into word phrases, and the use the operation in applications are included.

  • Chapter 2: The Language of Algebra

    Mathematical vocabulary as it applies to the whole numbers is presented. The use of variables, which distinguishes algebra from arithmetic, is introduced early in the chapter, and the development of and practice with arithmetic concepts use variables as well as numeric expressions. In addition, the difference between expressions and equations is discussed, word problems are introduced, and the process for solving one-step equations is modeled.

  • Chapter 3: Integers

    While introducing the basic operations with negative numbers, students continue to practice simplifying, evaluating, and translating algebraic expressions. The Division Property of Equality is introduced and used to solve one-step equations.

  • Chapter 4: Fractions

    Fraction circles and bars are used to help make fractions real and to develop operations on them. Students continue simplifying and evaluating algebraic expressions with fractions, and learn to use the Multiplication Property of Equality to solve equations involving fractions.

  • Chapter 5: Decimals

    Basic operations with decimals are presented, as well as methods for converting fractions to decimals and vice versa. Averages and probability, unit rates and unit prices, and square roots are included to provide opportunities to use and round decimals.

  • Chapter 6: Percents

    Conversions among percents, fractions, and decimals are explored. Applications of percent include calculating sales tax, commission, and simple interest. Proportions and solving percent equations as proportions are addressed as well.

  • Chapter 7: The Properties of Real Numbers

    The properties of real numbers are introduced and applied as a culmination of the work done thus far, and to prepare students for the upcoming chapters on equations, polynomials, and graphing.

  • Chapter 8: Solving Linear Equations

    A gradual build-up to solving multi-step equations is presented. Problems involve solving equations with constants on both sides, variables on both sides, variables and constants on both sides, and fraction and decimal coefficients.

  • Chapter 9: Math Models and Geometry

    The chapter begins with opportunities to solve “traditional” number, coin, and mixture problems. Geometry sections cover the properties of triangles, rectangles, trapezoids, circles, irregular figures, the Pythagorean Theorem, and volumes and surface areas of solids. Distance-rate-time problems, and formulas are included as well.

  • Chapter 10: Polynomials

    Adding and subtracting polynomials is presented as an extension of prior work on combining like terms. Integer exponents are defined and then applied to scientific notation. The chapter concludes with a brief introduction to factoring polynomials.

  • Chapter 11: Graphs

    This chapter is placed last so that all of the algebra with one variable is completed before working with linear equations in two variables. Examples progress from plotting points to graphing lines by making a table of solutions to an equation. Properties of vertical and horizontal lines and intercepts are included. Graphing linear equations at the end of the course gives students a good opportunity to review evaluating expressions and solving equations.

Questions & Answers

What are the factors that affect demand for a commodity
Florence Reply
differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Prealgebra. OpenStax CNX. Jul 15, 2016 Download for free at http://legacy.cnx.org/content/col11756/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Prealgebra' conversation and receive update notifications?

Ask