<< Chapter < Page Chapter >> Page >
This report summarizes work done as part of the Physics of Strings PFUG under Rice University's VIGRE program. VIGRE is a program of Vertically Integrated Grants for Research and Education in the Mathematical Sciences under the direction of the National Science Foundation. A PFUG is a group of Postdocs, Faculty, Undergraduates and Graduate students formed round the study of a common problem. This module describes experiments done on a spring system.

A network of springs

Our research is centered on a network of springs, built by Jeff Hokansen and Dr. Mark Embree for use in the CAAM 335 Lab. Over the table, we set up a webcam on a beam and connected it to a computer running MATLAB. Springs are connected to pennies (nodes), two of which are fixed to the table. Along the outside pennies, strings run over pullies set along the edge of the table and are attached to hooks, upon which we hang masses. These masses cause the nodes to move. We use the webcam to capture an image of the network, then use a MATLAB script to find the center of each node; the pennies have been painted red to make it easier for MATLAB to detect them. This gives us the displacement of each node, from which we can compute the elongation of each spring. We also know the force applied to each node ( 9 . 8 * m a s s in units of Newtons) and can calculate the spring constant k for each spring using Hooke's Law, f restoring = - ( elongation ) * k

A forward problem

In the forward problem, we seek to compare results from our physical model to the results predicted by solving a linear system of equations. Specifically, we wish to predict our displacements, given we know the load forces and spring constants in our system of springs.

Let us begin with an easier system of just two springs, three nodes, and two forces. Since only two of the nodes are moving, we will have two horizontal displacements denoted in the vector x . There are two elongations, one for each spring, denoted in the vector e .

2 Spring Network
x = x 1 x 2 , e = e 1 e 2 ,

Each spring elongation is a linear combination of node displacements. The equations can be written in the following manner.

e = e 1 e 2 = x 1 x 2 - x 1 = 1 0 - 1 1 x = A x

Now we have our adjacency matrix, A . This translates us from node displacement to spring elongation. It will have one more property which will we shall see shortly. Now let us consider finding the restoring force, y , which will have one component for each spring.

y = y 1 y 2 ,

We assume that each spring follows Hooke's Law, y = k e , where restoring force is directly proportional to elongation. Each spring has a corresponding stiffness, k i which comprise the the diagonal elements of matrix, K .

y = y 1 y 2 = k 1 e 1 k 2 e 2 = k 1 0 0 k 2 e = K e = K A x

The final step is to translate these restoring forces into the load forces acting on each node, denoted by vector f .

f = f 1 f 2 = y 1 - y 2 y 2 = 1 - 1 0 1 = A T y

Now we can see the second feature of the adjacency martrix. The transpose of A performs the reverse translation from edges to nodes. The final product of this example is the equation just shown: f = A T K A x . Now we can expand the problem to any system of springs for which we can create an adjacency matrix A. For this project we focused on the spring network shown below.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, The art of the pfug. OpenStax CNX. Jun 05, 2013 Download for free at http://cnx.org/content/col10523/1.34
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'The art of the pfug' conversation and receive update notifications?

Ask