<< Chapter < Page Chapter >> Page >

+ Branch prediction

+Delayed branch.

  • Multiple streams

- Replicate the initial portions of the pipeline and fetch both possible next instructions

- Increases chance of memory contention

- Must support multiple streams for each instruction in the pipeline

  • Prefetch branch target

- When the branch instruction is decoded, begin to fetch the branch target instruction and place in a second prefetch buffer

- If the branch is not taken, the sequential instructions are already in the pipe, so there is not loss of performance

- If the branch is taken, the next instruction has been prefetched and results in minimal branch penalty (don’t have to incur a memory read operation at the end of the branch to fetch the instruction)

  • Loop buffer: Look ahead, look behind buffer

- Many conditional branches operations are used for loop control

- Expand prefetch buffer so as to buffer the last few instructions executed in addition to the ones that are waiting to be executed

- If buffer is big enough, entire loop can be held in it, this can reduce the branch penalty.

  • Branch prediction

- Make a good guess as to which instruction will be executed next and start that one down the pipeline.

- Static guesses: make the guess without considering the runtime history of the program

Branch never taken

Branch always taken

Predict based on the opcode

- Dynamic guesses: track the history of conditional branches in the program.

Taken / not taken switch History table

Figure 8.3. Branch prediction using 2 history bits

  • Delayed branch

- Minimize the branch penalty by finding valid instructions to execute in the pipeline while the branch address is being resolved.

- It is possible to improve performance by automatically rearranging instruction within a program, so that branch instruction occur later than actually desired

- Compiler is tasked with reordering the instruction sequence to find enough independent instructions (wrt to the conditional branch) to feed into the pipeline after the branch that the branch penalty is reduced to zero

3. superscalar and superpipelined processors

3.1 superpipeline designs

– Observation: a large number of operations do not require the full clock cycle to complete

– High performance can be obtained by subdividing the clock cycle into a number of sub intervals » Higher clock frequency!

– Subdivide the “macro” pipeline H/W stages into smaller (thus faster) substages and clock data through at the higher clock rate

– Time to complete individual instructions does not change

» Degree of parallelism goes up

» Perceived speedup goes up

3.2 superscalar

– Implement the CPU such that more than one instruction can be performed (completed) at a time

– Involves replication of some or all parts of the CPU/ALU

– Examples:

» Fetch multiple instructions at the same time

» Decode multiple instructions at the same time

» Perform add and multiply at the same time

» Perform load/stores while performing ALU operation

– Degree of parallelism and hence the speedup of the machine goes up as more instructions are executed in parallel

  • Data dependencies in superscalar

– It must insure computed results are the same as would be computed on a strictly sequential machine

– Two instructions can not be executed in parallel if the (data) output of one is the input of the other or if they both write to the same output location

– Consider:

S1: A = B + C

S2: D = A + 1

S3: B = E + F

S4: A = E + 3

Resource dependencies:

– In the above sequence of instructions, the adder unit gets a real workout!

– Parallelism is limited by the number of adders in the ALU

3.3 instruction issue policy

Problem: In what order are instructions issued to the execution unit and in what order do they finish?

There is 3 types of ordering.

- The order in which instructions are fetched

- The order in which instructions are executed

- The order in which instructions update the contents of registre or memory location.

  • In-order issue, in-order completion

» Simplest method, but severely limits performance

» Strict ordering of instructions: data and procedural dependencies or resource conflicts delay all subsequent instructions

» Delay execution of some instructions delay all subsequent instructions

  • In-order issue, out-of-order completion

» Any number of instructions can be executed at a time

» Instruction issue is still limited by resource conflicts or data and procedural dependencies

» Output dependencies resulting from out-of order completion must be resolved

» “Instruction” interrupts can be tricky

  • Out-of-order issue, out-of-order completion

» Decode and execute stages are decoupled via an instruction buffer “window”

» Decoded instructions are “stored” in the window awaiting execution

» Functional units will take instructions from the window in an attempt to stay busy

This can result in out-of-order execution

S1: A = B + C

S2: D = E + 1

S3: G = E + F

S4: H = E * 3

“Antidependence” class of data dependencies must be dealt with it.

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Computer architecture. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10761/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Computer architecture' conversation and receive update notifications?

Ask