# 0.1 2:hough transform

 Page 1 / 3

## 2.1 approach

We first detect edges using the Sobel operator [1], and then we apply the Hough circle transform to detect circles in the image [2.]The following steps we took will be covered in more detail under section 2.2.

1. Blurring image with the Gaussian kernel
2. Using the Sobel operator to find edge points
3. Applying Hough circle transform
4. Processing the results of the transform

Fig 2.1 From left to right: Original image, blurred image, image Edges, Hough transform results, processing the results of the Hough transform.

## 2.2 software implementation

Software implementation was done with Python. The following Python libraries were used.

• Numpy version 1.10.1
• Scipy version 0.16.0
• OpenCV version 3.0.0

## 2.2.1 blurring the image with the gaussian kernel

Blurring the image removes noise and filters out background details. To do this, we blur the image with a Gaussian kernel.

Fig 2.2 5x5 Gaussian kernel with a standard deviation of 1

``` Code def blur(img, blursize): """:param img: image to be blurred :param blursize: size of gaussian kernel to blur with:return: blurred image """# ============================= # Generate Gaussian kernel# ============================= gauss = cv2.getGaussianKernel(blursize, blursize/3)gauss = np.outer(gauss, gauss) # =============================# Filter with Gaussian kernel # =============================img = cv2.filter2D(img, -1, gauss) return img```

## 2.2.2 using the sobel operator to find edge points

Edges occur at large changes in pixel value, so by finding local maximums in the image gradient’s magnitude, we can detect edge points. This concept is illustrated in 1 dimension (1D) in Fig 2.3.

Fig 2.3 Edges occur at large changes in pixel value, or, local maximums in the derivative.

Convolving an image with the Sobel operator gives us the approximate partial derivatives in the x and y directions. Let us define The Sobel operator as Sx for the x direction and Sy for the y direction, let our define our image as A, and let us define Bx and By as the partial x and partial y, respectively, derivative approximations of A.

Fig 2.4 Sobel operators for approximating partial x and partial y derivatives

We can find the magnitude of gradient with equation 2.2, where the square and square root are element-wise operations.

Now let E be a boolean matrix of the same dimensions as the image where if a pixel is an edge, then the boolean value for the pixel is True. We calculate this matrix by determining a threshold tmag and declaring every pixel whose gradient magnitude is at least tmag an edge pixel

In our actual approach, we split the image into red, blue, and green channels. We perform edge detection on all 3 and recombine them with equation 2.4. This method allows us to find cleaner edges.

We can find the gradient of B with equation 2.5. Though it doesn’t factor into the method of edge detection used here, finding the gradient at edges is important for reducing computational complexity for the Hough transform.

how to know photocatalytic properties of tio2 nanoparticles...what to do now
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
what is fullerene does it is used to make bukky balls
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
for screen printed electrodes ?
SUYASH
What is lattice structure?
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
what's the easiest and fastest way to the synthesize AgNP?
China
Cied
types of nano material
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
what is nano technology
what is system testing?
preparation of nanomaterial
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
what is system testing
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
how did you get the value of 2000N.What calculations are needed to arrive at it
Privacy Information Security Software Version 1.1a
Good
Berger describes sociologists as concerned with
Got questions? Join the online conversation and get instant answers!