<< Chapter < Page Chapter >> Page >

All of the micro-operations needed to perform one instruction cycle, including all of the micro-operations to execute every instruction in the instruction set, fall into one of these categories.

We can now be somewhat more explicit about the way in which the control unit functions. The control unit performs two basic tasks:

  • Sequencing: The control unit causes the processor lo step through a series of micro-operations in the proper sequence, based on the program being executed.
  • Execution: The control unit causes each micro-operation to be performed.

The preceding is a functional description of what the control unit does. The key to how the control unit operates is the use of control signals.

2.2 control signals

We have defined the elements that make up the processor (ALU, registers, data paths) and the micro-operations that are performed. For the control unit to perform its function, it must have inputs that allow it to determine the slate of the system and outputs that allow it to control the behavior of the system. These are the exter­nal specifications of the control unit. Internally, the control unit must have the logic required lo perform its sequencing and execution functions.

Figure 6.4 is a general model of the control unit, showing all of its inputs and outputs.

Figure 6.4 Model of Control Unit

The inputs are as follows:

  • Clock: This is how the control unit "keeps time." The control unit causes one micro-operation (or a set of simultaneous micro-operations) to be performed for each clock pulse. This is sometimes referred to as the processor cycle time. or the clock cycle lime.
  • Instruction register: The opcode of the current instruction is used lo determine which micro-operations lo perform during the execute cycle.
  • Flags: These are needed by the control unit to determine the status of the processor and the outcome of previous ALU operations. For example, for the increment-and-skip-if-zero (ISZ) instruction, the control until will increment the PC if the zero flag is set.
  • Control signals from control bus: The control bus portion of the system bus pro-vides signals to the control unit, such as interrupt signals and acknowledgments.

The outputs are as follows:

  • Control signals within the processor: These are two types: those that cause data to be moved from one register to another, and those that activate specific ALU functions.
  • Control signals to control bus: These are also of two types: control signals lo memory, and control signals lo the I/O modules.

The new element that has been introduced in this figure is the control signal. Three types of control signals are used: those that activate an ALU function, those that activate a data path, and those that are signals on the external system bus or other external interface. All of these signals are ultimately applied directly as binary inputs lo individual logic gates.

Let us consider again the fetch cycle to see how the control unit maintains control. The control unit keeps track of where it is in the instruction cycle. At a given point, it knows that the fetch cycle is to be performed next. The first step is to transfer the contents of the PC to the MAR. The control unit does this by activating the control signal that opens the gates between the bits of the PC and the bits of the MAR. The next step is to read a word from memory into the MBR and increment the PC. The control unit does this by sending the following control signals simultaneously:

Questions & Answers

what is a good calculator for all algebra; would a Casio fx 260 work with all algebra equations? please name the cheapest, thanks.
Kevin Reply
a perfect square v²+2v+_
Dearan Reply
kkk nice
Abdirahman Reply
algebra 2 Inequalities:If equation 2 = 0 it is an open set?
Kim Reply
or infinite solutions?
Embra Reply
if |A| not equal to 0 and order of A is n prove that adj (adj A = |A|
Nancy Reply
rolling four fair dice and getting an even number an all four dice
ramon Reply
Kristine 2*2*2=8
Bridget Reply
Differences Between Laspeyres and Paasche Indices
Emedobi Reply
No. 7x -4y is simplified from 4x + (3y + 3x) -7y
Mary Reply
is it 3×y ?
Joan Reply
J, combine like terms 7x-4y
Bridget Reply
im not good at math so would this help me
Rachael Reply
how did I we'll learn this
Noor Reply
f(x)= 2|x+5| find f(-6)
Prince Reply
Need to simplify the expresin. 3/7 (x+y)-1/7 (x-1)=
Crystal Reply
. After 3 months on a diet, Lisa had lost 12% of her original weight. She lost 21 pounds. What was Lisa's original weight?
Chris Reply
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
what is system testing
what is the application of nanotechnology?
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
anybody can imagine what will be happen after 100 years from now in nano tech world
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
silver nanoparticles could handle the job?
not now but maybe in future only AgNP maybe any other nanomaterials
can nanotechnology change the direction of the face of the world
Prasenjit Reply
At high concentrations (>0.01 M), the relation between absorptivity coefficient and absorbance is no longer linear. This is due to the electrostatic interactions between the quantum dots in close proximity. If the concentration of the solution is high, another effect that is seen is the scattering of light from the large number of quantum dots. This assumption only works at low concentrations of the analyte. Presence of stray light.
Ali Reply
the Beer law works very well for dilute solutions but fails for very high concentrations. why?
bamidele Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Computer architecture. OpenStax CNX. Jul 29, 2009 Download for free at http://cnx.org/content/col10761/1.1
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Computer architecture' conversation and receive update notifications?