<< Chapter < Page Chapter >> Page >

The integrated rate law for our second-order reactions has the form of the equation of a straight line:

1 [ A ] = k t + 1 [ A ] 0 y = m x + b

A plot of 1 [ A ] versus t for a second-order reaction is a straight line with a slope of k and an intercept of 1 [ A ] 0 . If the plot is not a straight line, then the reaction is not second order.

Determination of reaction order by graphing

Test the data given to show whether the dimerization of C 4 H 6 is a first- or a second-order reaction.

Solution

Trial Time (s) [C 4 H 6 ] ( M )
1 0 1.00 × 10 −2
2 1600 5.04 × 10 −3
3 3200 3.37 × 10 −3
4 4800 2.53 × 10 −3
5 6200 2.08 × 10 −3

In order to distinguish a first-order reaction from a second-order reaction, we plot ln[C 4 H 6 ] versus t and compare it with a plot of 1 [ C 4 H 6 ] versus t . The values needed for these plots follow.

Time (s) 1 [ C 4 H 6 ] ( M −1 ) ln[C 4 H 6 ]
0 100 −4.605
1600 198 −5.289
3200 296 −5.692
4800 395 −5.978
6200 481 −6.175

The plots are shown in [link] . As you can see, the plot of ln[C 4 H 6 ] versus t is not linear, therefore the reaction is not first order. The plot of 1 [ C 4 H 6 ] versus t is linear, indicating that the reaction is second order.

Two graphs are shown, each with the label “Time ( s )” on the x-axis. The graph on the left is labeled, “l n [ C subscript 4 H subscript 6 ],” on the y-axis. The graph on the right is labeled “1 divided by [ C subscript 4 H subscript 6 ],” on the y-axis. The x-axes for both graphs show markings at 3000 and 6000. The y-axis for the graph on the left shows markings at negative 6, negative 5, and negative 4. A decreasing slightly concave up curve is drawn through five points at coordinates that are (0, negative 4.605), (1600, negative 5.289), (3200, negative 5.692), (4800, negative 5.978), and (6200, negative 6.175). The y-axis for the graph on the right shows markings at 100, 300, and 500. An approximately linear increasing curve is drawn through five points at coordinates that are (0, 100), (1600, 198), (3200, 296), and (4800, 395), and (6200, 481).
These two graphs show first- and second-order plots for the dimerization of C 4 H 6 . Since the first-order plot (left) is not linear, we know that the reaction is not first order. The linear trend in the second-order plot (right) indicates that the reaction follows second-order kinetics.

Check your learning

Does the following data fit a second-order rate law?

Trial Time (s) [ A ] ( M )
1 5 0.952
2 10 0.625
3 15 0.465
4 20 0.370
5 25 0.308
6 35 0.230

Answer:

Yes. The plot of 1 [ A ] vs. t is linear:

A graph, with the title “1 divided by [ A ] vs. Time” is shown, with the label, “Time ( s ),” on the x-axis. The label “1 divided by [ A ]” appears left of the y-axis. The x-axis shows markings beginning at zero and continuing at intervals of 10 up to and including 40. The y-axis on the left shows markings beginning at 0 and increasing by intervals of 1 up to and including 5. A line with an increasing trend is drawn through six points at approximately (4, 1), (10, 1.5), (15, 2.2), (20, 2.8), (26, 3.4), and (36, 4.4).
Got questions? Get instant answers now!

Zero-order reactions

For zero-order reactions, the differential rate law is:

Rate = k [ A ] 0 = k

A zero-order reaction thus exhibits a constant reaction rate, regardless of the concentration of its reactants.

The integrated rate law for a zero-order reaction also has the form of the equation of a straight line:

[ A ] = k t + [ A ] 0 y = m x + b

A plot of [ A ] versus t for a zero-order reaction is a straight line with a slope of −k and an intercept of [ A ] 0 . [link] shows a plot of [NH 3 ] versus t for the decomposition of ammonia on a hot tungsten wire and for the decomposition of ammonia on hot quartz (SiO 2 ). The decomposition of NH 3 on hot tungsten is zero order; the plot is a straight line. The decomposition of NH 3 on hot quartz is not zero order (it is first order). From the slope of the line for the zero-order decomposition, we can determine the rate constant:

slope = k = 1.3110 −6 mol/L/s
A graph is shown with the label, “Time ( s ),” on the x-axis and, “[ N H subscript 3 ] M,” on the y-axis. The x-axis shows a single value of 1000 marked near the right end of the axis. The vertical axis shows markings at 1.0 times 10 superscript negative 3, 2.0 times 10 superscript negative 3, and 3.0 times 10 superscript negative 3. A decreasing linear trend line is drawn through six points at the approximate coordinates: (0, 2.8 times 10 superscript negative 3), (200, 2.6 times 10 superscript negative 3), (400, 2.3 times 10 superscript negative 3), (600, 2.0 times 10 superscript negative 3), (800, 1.8 times 10 superscript negative 3), and (1000, 1.6 times 10 superscript negative 3). This line is labeled “Decomposition on W.” A decreasing slightly concave up curve is similarly drawn through eight points at the approximate coordinates: (0, 2.8 times 10 superscript negative 3), (100, 2.5 times 10 superscript negative 3), (200, 2.1 times 10 superscript negative 3), (300, 1.9 times 10 superscript negative 3), (400, 1.6 times 10 superscript negative 3), (500, 1.4 times 10 superscript negative 3), and (750, 1.1 times 10 superscript negative 3), ending at about (1000, 0.7 times 10 superscript negative 3). This curve is labeled “Decomposition on S i O subscript 2.”
The decomposition of NH 3 on a tungsten (W) surface is a zero-order reaction, whereas on a quartz (SiO 2 ) surface, the reaction is first order.

The half-life of a reaction

The half-life of a reaction ( t 1/2 ) is the time required for one-half of a given amount of reactant to be consumed. In each succeeding half-life, half of the remaining concentration of the reactant is consumed. Using the decomposition of hydrogen peroxide ( [link] ) as an example, we find that during the first half-life (from 0.00 hours to 6.00 hours), the concentration of H 2 O 2 decreases from 1.000 M to 0.500 M . During the second half-life (from 6.00 hours to 12.00 hours), it decreases from 0.500 M to 0.250 M ; during the third half-life, it decreases from 0.250 M to 0.125 M . The concentration of H 2 O 2 decreases by half during each successive period of 6.00 hours. The decomposition of hydrogen peroxide is a first-order reaction, and, as can be shown, the half-life of a first-order reaction is independent of the concentration of the reactant. However, half-lives of reactions with other orders depend on the concentrations of the reactants.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
what is biology
Victoria Reply
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask