<< Chapter < Page Chapter >> Page >
Cu ( s ) Cu 2+ ( a q , 1 M ) Ag + ( a q , 1 M ) Ag ( s )
anode (oxidation): Cu ( s ) Cu 2+ ( a q ) + 2e cathode (reduction): 2 Ag + ( a q ) + 2e 2Ag ( s ) ¯ overall: Cu ( s ) + 2Ag + ( a q ) Cu 2+ ( a q ) + 2Ag ( s )
E cell ° = E cathode ° E anode ° = E Ag + /Ag ° E Cu 2+ /Cu ° = 0.80 V 0.34 V = 0.4 6 V

Again, note that when calculating E cell ° , standard reduction potentials always remain the same even when a half-reaction is multiplied by a factor. Standard reduction potentials for selected reduction reactions are shown in [link] . A more complete list is provided in Appendix L .

This figure contains a diagram of an electrochemical cell. Two beakers are shown. Each is just over half full. The beaker on the left contains a clear, colorless solution which is labeled “H N O subscript 3 ( a q ).” The beaker on the right contains a clear, colorless solution which is labeled “A g N O subscript 3 ( a q ).” A glass tube in the shape of an inverted U connects the two beakers at the center of the diagram and is labeled “Salt bridge.” The tube contents are colorless. The ends of the tubes are beneath the surface of the solutions in the beakers and a small grey plug is present at each end of the tube. The label “2 N a superscript plus” appears on the upper right portion of the tube. A curved arrow extends from this label down and to the right. The label “2 N O subscript 3 superscript negative” appears on the upper left portion of the tube. A curved arrow extends from this label down and to the left. The beaker on the left has a glass tube partially submerged in the liquid. Bubbles are rising from the grey square, labeled “SHE anode” at the bottom of the tube. A curved arrow points up to the right. The labels “2 H superscript plus” and “2 N O subscript 3 superscript negative” appear on the liquid in the beaker. A black wire extends from the grey square up the interior of the tube through a small port at the top to a rectangle with a digital readout of “positive 0.80 V” which is labeled “Voltmeter.” A second small port extends out the top of the tube to the left. An arrow points to the port opening from the left. The base of this arrow is labeled “H subscript 2 ( g ).” The beaker on the right has a silver strip that is labeled “A g cathode.” A wire extends from the top of this strip to the voltmeter. An arrow points toward the voltmeter from the left which is labeled “e superscript negative flow.” Similarly, an arrow points away from the voltmeter to the right. The solution in the beaker on the right has the labels “N O subscript 3 superscript negative” and “A g superscript plus” on the solution. A curved arrow extends from the A g superscript plus label to the A g cathode. Below the left beaker at the bottom of the diagram is the label “Oxidation half-reaction: H subscript 2 ( g ) right pointing arrow 2 H superscript plus ( a q ) plus 2 e superscript negative.” Below the right beaker at the bottom of the diagram is the label “Reduction half-reaction: 2 A g superscript plus ( a q ) right pointing arrow 2 A g ( s ).”
A galvanic cell can be used to determine the standard reduction potential of Ag + . The SHE on the left is the anode and assigned a standard reduction potential of zero.
Selected Standard Reduction Potentials at 25 °C
Half-Reaction E ° (V)
F 2 ( g ) + 2e 2F ( a q ) +2.866
PbO 2 ( s ) + SO 4 2− ( a q ) + 4H + ( a q ) + 2e PbSO 4 ( s ) + 2H 2 O ( l ) +1.69
MnO 4 ( a q ) + 8H + ( a q ) + 5e Mn 2+ ( a q ) + 4H 2 O ( l ) +1.507
Au 3+ ( a q ) + 3e Au ( s ) +1.498
Cl 2 ( g ) + 2e 2Cl ( a q ) +1.35827
O 2 ( g ) + 4H + ( a q ) + 4e 2H 2 O ( l ) +1.229
Pt 2+ ( a q ) + 2e Pt ( s ) +1.20
Br 2 ( a q ) + 2e 2Br ( a q ) +1.0873
Ag + ( a q ) + e Ag ( s ) +0.7996
Hg 2 2+ ( a q ) + 2e 2Hg ( l ) +0.7973
Fe 3+ ( a q ) + e Fe 2+ ( a q ) +0.771
MnO 4 ( a q ) + 2H 2 O ( l ) + 3e MnO 2 ( s ) + 4OH ( a q ) +0.558
I 2 ( s ) + 2e 2I ( a q ) +0.5355
NiO 2 ( s ) + 2H 2 O ( l ) + 2e Ni(OH) 2 ( s ) + 2OH ( a q ) +0.49
Cu 2+ ( a q ) + 2e Cu ( s ) +0.337
Hg 2 Cl 2 ( s ) + 2e 2Hg ( l ) + 2Cl ( a q ) +0.26808
AgCl ( s ) + 2e Ag ( s ) + Cl ( a q ) +0.22233
Sn 4+ ( a q ) + 2e Sn 2+ ( a q ) +0.151
2H + ( a q ) + 2e H 2 ( g ) 0.00
Pb 2+ ( a q ) + 2e Pb ( s ) −0.126
Sn 2+ ( a q ) + 2e Sn ( s ) −0.1262
Ni 2+ ( a q ) + 2e Ni ( s ) −0.257
Co 2+ ( a q ) + 2e Co ( s ) −0.28
PbSO 4 ( s ) + 2e Pb ( s ) + SO 4 2− ( a q ) −0.3505
Cd 2+ ( a q ) + 2e Cd ( s ) −0.4030
Fe 2+ ( a q ) + 2e Fe ( s ) −0.447
Cr 3+ ( a q ) + 3e Cr ( s ) −0.744
Mn 2+ ( a q ) + 2e Mn ( s ) −1.185
Zn(OH) 2 ( s ) + 2e Zn ( s ) + 2OH ( a q ) −1.245
Zn 2+ ( a q ) + 2e Zn ( s ) −0.7618
Al 3+ ( a q ) + 3e Al ( s ) −1.662
Mg 2 ( a q ) + 2e Mg ( s ) −2.372
Na + ( a q ) + e Na ( s ) −2.71
Ca 2+ ( a q ) + 2e Ca ( s ) −2.868
Ba 2+ ( a q ) + 2e Ba ( s ) −2.912
K + ( a q ) + e K ( s ) −2.931
Li + ( a q ) + e Li ( s ) −3.04

Tables like this make it possible to determine the standard cell potential for many oxidation-reduction reactions.

Cell potentials from standard reduction potentials

What is the standard cell potential for a galvanic cell that consists of Au 3+ /Au and Ni 2+ /Ni half-cells? Identify the oxidizing and reducing agents.

Solution

Using [link] , the reactions involved in the galvanic cell, both written as reductions, are

Au 3+ ( a q ) + 3 e Au ( s ) E Au 3+ /Au ° = +1.498 V
Ni 2+ ( a q ) + 2 e Ni ( s ) E Ni 2+ /Ni ° = −0.257 V

Galvanic cells have positive cell potentials, and all the reduction reactions are reversible. The reaction at the anode will be the half-reaction with the smaller or more negative standard reduction potential. Reversing the reaction at the anode (to show the oxidation) but not its standard reduction potential gives:

Anode (oxidation): Ni ( s ) Ni 2+ ( a q ) + 2e E anode ° = E Ni 2+ /Ni ° = −0.257 V Cathode (reduction): Au 3+ ( a q ) + 3e Au ( s ) E cathode ° = E Au 3+ /Au ° = +1.498 V

The least common factor is six, so the overall reaction is

3Ni ( s ) + 2Au 3+ ( a q ) 3Ni 2+ ( a q ) + 2Au ( s )

The reduction potentials are not scaled by the stoichiometric coefficients when calculating the cell potential, and the unmodified standard reduction potentials must be used.

E cell ° = E cathode ° E anode ° = 1.498 V ( −0.2 57 V ) = 1.7 55 V

From the half-reactions, Ni is oxidized, so it is the reducing agent, and Au 3+ is reduced, so it is the oxidizing agent.

Check your learning

A galvanic cell consists of a Mg electrode in 1 M Mg(NO 3 ) 2 solution and a Ag electrode in 1 M AgNO 3 solution. Calculate the standard cell potential at 25 °C.

Answer:

Mg ( s ) + 2 Ag + ( a q ) Mg 2+ ( a q ) + 2 Ag ( s ) E cell ° = 0.7 996 V ( −2.3 72 V ) = 3.17 2 V

Got questions? Get instant answers now!

Key concepts and summary

Assigning the potential of the standard hydrogen electrode (SHE) as zero volts allows the determination of standard reduction potentials, , for half-reactions in electrochemical cells. As the name implies, standard reduction potentials use standard states (1 bar or 1 atm for gases; 1 M for solutes, often at 298.15 K) and are written as reductions (where electrons appear on the left side of the equation). The reduction reactions are reversible, so standard cell potentials can be calculated by subtracting the standard reduction potential for the reaction at the anode from the standard reduction for the reaction at the cathode. When calculating the standard cell potential, the standard reduction potentials are not scaled by the stoichiometric coefficients in the balanced overall equation.

Key equations

  • E cell ° = E cathode ° E anode °

Chemistry end of chapter exercises

For each reaction listed, determine its standard cell potential at 25 °C and whether the reaction is spontaneous at standard conditions.

(a) Mg ( s ) + Ni 2+ ( a q ) Mg 2+ ( a q ) + Ni ( s )

(b) 2 Ag + ( a q ) + Cu ( s ) Cu 2+ ( a q ) + 2Ag ( s )

(c) Mn ( s ) + Sn(NO 3 ) 2 ( a q ) Mn(NO 3 ) 2 ( a q ) + Sn ( s )

(d) 3 Fe(NO 3 ) 2 ( a q ) + Au(NO 3 ) 3 ( a q ) 3Fe(NO 3 ) 3 ( a q ) + Au ( s )

(a) +2.115 V (spontaneous); (b) +0.4626 V (spontaneous); (c) +1.0589 V (spontaneous); (d) +0.727 V (spontaneous)

Got questions? Get instant answers now!

For each reaction listed, determine its standard cell potential at 25 °C and whether the reaction is spontaneous at standard conditions.

(a) Mn ( s ) + Ni 2+ ( a q ) Mn 2+ ( a q ) + Ni ( s )

(b) 3 Cu 2+ ( a q ) + 2Al ( s ) 2Al 3+ ( a q ) + 2Cu ( s )

(c) Na ( s ) + LiNO 3 ( a q ) NaNO 3 ( a q ) + Li ( s )

(d) Ca(NO 3 ) 2 ( a q ) + Ba ( s ) Ba(NO 3 ) 2 ( a q ) + Ca ( s )

Got questions? Get instant answers now!

Determine the overall reaction and its standard cell potential at 25 °C for this reaction. Is the reaction spontaneous at standard conditions?

Cu ( s ) Cu 2+ ( a q ) Au 3+ ( a q ) Au ( s )

3 Cu ( s ) + 2Au 3+ ( a q ) 3Cu 2+ ( a q ) + 2Au ( s ) ; +1.16 V; spontaneous

Got questions? Get instant answers now!

Determine the overall reaction and its standard cell potential at 25 °C for the reaction involving the galvanic cell made from a half-cell consisting of a silver electrode in 1 M silver nitrate solution and a half-cell consisting of a zinc electrode in 1 M zinc nitrate. Is the reaction spontaneous at standard conditions?

Got questions? Get instant answers now!

Determine the overall reaction and its standard cell potential at 25 °C for the reaction involving the galvanic cell in which cadmium metal is oxidized to 1 M cadmium(II) ion and a half-cell consisting of an aluminum electrode in 1 M aluminum nitrate solution. Is the reaction spontaneous at standard conditions?

3 Cd ( s ) + 2Al 3+ ( a q ) 3Cd 2+ ( a q ) + 2Al ( s ) ; −1.259 V; nonspontaneous

Got questions? Get instant answers now!

Determine the overall reaction and its standard cell potential at 25 °C for these reactions. Is the reaction spontaneous at standard conditions? Assume the standard reduction for Br 2 ( l ) is the same as for Br 2 ( aq ).
Pt ( s ) H 2 ( g ) H + ( a q ) Br 2 ( a q ) Br ( a q ) Pt ( s )

Got questions? Get instant answers now!

Questions & Answers

what does preconceived mean
sammie Reply
physiological Psychology
Nwosu Reply
How can I develope my cognitive domain
Amanyire Reply
why is communication effective
Dakolo Reply
Communication is effective because it allows individuals to share ideas, thoughts, and information with others.
effective communication can lead to improved outcomes in various settings, including personal relationships, business environments, and educational settings. By communicating effectively, individuals can negotiate effectively, solve problems collaboratively, and work towards common goals.
it starts up serve and return practice/assessments.it helps find voice talking therapy also assessments through relaxed conversation.
miss
Every time someone flushes a toilet in the apartment building, the person begins to jumb back automatically after hearing the flush, before the water temperature changes. Identify the types of learning, if it is classical conditioning identify the NS, UCS, CS and CR. If it is operant conditioning, identify the type of consequence positive reinforcement, negative reinforcement or punishment
Wekolamo Reply
please i need answer
Wekolamo
because it helps many people around the world to understand how to interact with other people and understand them well, for example at work (job).
Manix Reply
Agreed 👍 There are many parts of our brains and behaviors, we really need to get to know. Blessings for everyone and happy Sunday!
ARC
A child is a member of community not society elucidate ?
JESSY Reply
Isn't practices worldwide, be it psychology, be it science. isn't much just a false belief of control over something the mind cannot truly comprehend?
Simon Reply
compare and contrast skinner's perspective on personality development on freud
namakula Reply
Skinner skipped the whole unconscious phenomenon and rather emphasized on classical conditioning
war
explain how nature and nurture affect the development and later the productivity of an individual.
Amesalu Reply
nature is an hereditary factor while nurture is an environmental factor which constitute an individual personality. so if an individual's parent has a deviant behavior and was also brought up in an deviant environment, observation of the behavior and the inborn trait we make the individual deviant.
Samuel
I am taking this course because I am hoping that I could somehow learn more about my chosen field of interest and due to the fact that being a PsyD really ignites my passion as an individual the more I hope to learn about developing and literally explore the complexity of my critical thinking skills
Zyryn Reply
good👍
Jonathan
and having a good philosophy of the world is like a sandwich and a peanut butter 👍
Jonathan
generally amnesi how long yrs memory loss
Kelu Reply
interpersonal relationships
Abdulfatai Reply
What would be the best educational aid(s) for gifted kids/savants?
Heidi Reply
treat them normal, if they want help then give them. that will make everyone happy
Saurabh
What are the treatment for autism?
Magret Reply
hello. autism is a umbrella term. autistic kids have different disorder overlapping. for example. a kid may show symptoms of ADHD and also learning disabilities. before treatment please make sure the kid doesn't have physical disabilities like hearing..vision..speech problem. sometimes these
Jharna
continue.. sometimes due to these physical problems..the diagnosis may be misdiagnosed. treatment for autism. well it depends on the severity. since autistic kids have problems in communicating and adopting to the environment.. it's best to expose the child in situations where the child
Jharna
child interact with other kids under doc supervision. play therapy. speech therapy. Engaging in different activities that activate most parts of the brain.. like drawing..painting. matching color board game. string and beads game. the more you interact with the child the more effective
Jharna
results you'll get.. please consult a therapist to know what suits best on your child. and last as a parent. I know sometimes it's overwhelming to guide a special kid. but trust the process and be strong and patient as a parent.
Jharna
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask