<< Chapter < Page Chapter >> Page >

Like vaporization, the process of sublimation requires an input of energy to overcome intermolecular attractions. The enthalpy of sublimation, ΔH sub , is the energy required to convert one mole of a substance from the solid to the gaseous state. For example, the sublimation of carbon dioxide is represented by:

CO 2 ( s ) CO 2 ( g ) Δ H sub = 26.1 kJ/mol

Likewise, the enthalpy change for the reverse process of deposition is equal in magnitude but opposite in sign to that for sublimation:

CO 2 ( g ) CO 2 ( s ) Δ H dep = −Δ H sub = −26.1 kJ/mol

Consider the extent to which intermolecular attractions must be overcome to achieve a given phase transition. Converting a solid into a liquid requires that these attractions be only partially overcome; transition to the gaseous state requires that they be completely overcome. As a result, the enthalpy of fusion for a substance is less than its enthalpy of vaporization. This same logic can be used to derive an approximate relation between the enthalpies of all phase changes for a given substance. Though not an entirely accurate description, sublimation may be conveniently modeled as a sequential two-step process of melting followed by vaporization in order to apply Hess’s Law. Viewed in this manner, the enthalpy of sublimation for a substance may be estimated as the sum of its enthalpies of fusion and vaporization, as illustrated in [link] . For example:

solid liquid Δ H fus liquid gas Δ H vap ¯ solid gas Δ H sub = Δ H fus + Δ H vap
A diagram is shown with a vertical line drawn on the left side and labeled “Energy” and three horizontal lines drawn near the bottom, lower third and top of the diagram. These three lines are labeled, from bottom to top, “Solid,” “Liquid” and “Gas.” Near the middle of the diagram, a vertical, upward-facing arrow is drawn from the solid line to the gas line and labeled “Sublimation, delta sign, H, subscript sub.” To the right of this arrow is a second vertical, upward-facing arrow that is drawn from the solid line to the liquid line and labeled “Fusion, delta sign, H, subscript fus.” Above the second arrow is a third arrow drawn from the liquid line to the gas line and labeled, “Vaporization, delta sign, H, subscript vap.”
For a given substance, the sum of its enthalpy of fusion and enthalpy of vaporization is approximately equal to its enthalpy of sublimation.

Heating and cooling curves

In the chapter on thermochemistry, the relation between the amount of heat absorbed or related by a substance, q , and its accompanying temperature change, Δ T , was introduced:

q = m c Δ T

where m is the mass of the substance and c is its specific heat. The relation applies to matter being heated or cooled, but not undergoing a change in state. When a substance being heated or cooled reaches a temperature corresponding to one of its phase transitions, further gain or loss of heat is a result of diminishing or enhancing intermolecular attractions, instead of increasing or decreasing molecular kinetic energies. While a substance is undergoing a change in state, its temperature remains constant. [link] shows a typical heating curve.

Consider the example of heating a pot of water to boiling. A stove burner will supply heat at a roughly constant rate; initially, this heat serves to increase the water’s temperature. When the water reaches its boiling point, the temperature remains constant despite the continued input of heat from the stove burner. This same temperature is maintained by the water as long as it is boiling. If the burner setting is increased to provide heat at a greater rate, the water temperature does not rise, but instead the boiling becomes more vigorous (rapid). This behavior is observed for other phase transitions as well: For example, temperature remains constant while the change of state is in progress.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask