<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Outline the basic premise of crystal field theory (CFT)
  • Identify molecular geometries associated with various d-orbital splitting patterns
  • Predict electron configurations of split d orbitals for selected transition metal atoms or ions
  • Explain spectral and magnetic properties in terms of CFT concepts

The behavior of coordination compounds cannot be adequately explained by the same theories used for main group element chemistry. The observed geometries of coordination complexes are not consistent with hybridized orbitals on the central metal overlapping with ligand orbitals, as would be predicted by valence bond theory. The observed colors indicate that the d orbitals often occur at different energy levels rather than all being degenerate, that is, of equal energy, as are the three p orbitals. To explain the stabilities, structures, colors, and magnetic properties of transition metal complexes, a different bonding model has been developed. Just as valence bond theory explains many aspects of bonding in main group chemistry, crystal field theory is useful in understanding and predicting the behavior of transition metal complexes.

Crystal field theory

To explain the observed behavior of transition metal complexes (such as how colors arise), a model involving electrostatic interactions between the electrons from the ligands and the electrons in the unhybridized d orbitals of the central metal atom has been developed. This electrostatic model is crystal field theory    (CFT). It allows us to understand, interpret, and predict the colors, magnetic behavior, and some structures of coordination compounds of transition metals.

CFT focuses on the nonbonding electrons on the central metal ion in coordination complexes not on the metal-ligand bonds. Like valence bond theory, CFT tells only part of the story of the behavior of complexes. However, it tells the part that valence bond theory does not. In its pure form, CFT ignores any covalent bonding between ligands and metal ions. Both the ligand and the metal are treated as infinitesimally small point charges.

All electrons are negative, so the electrons donated from the ligands will repel the electrons of the central metal. Let us consider the behavior of the electrons in the unhybridized d orbitals in an octahedral complex. The five d orbitals consist of lobe-shaped regions and are arranged in space, as shown in [link] . In an octahedral complex, the six ligands coordinate along the axes.

This figure includes diagrams of five d orbitals. Each diagram includes three axes. The z-axis is vertical and is denoted with an upward pointing arrow. It is labeled “z” in the first diagram. Arrows similarly identify the x-axis with an arrow pointing from the rear left to the right front, diagonally across the figure and the y-axis with an arrow pointing from the left front diagonally across the figure to the right rear of the diagram. These axes are similarly labeled as “x” and “y.” In this first diagram, four orange balloon-like shapes extend from a point at the origin out along the x- and y- axes in positive and negative directions covering just over half the length of the positive and negative x- and y- axes. Beneath the diagram is the label, “d subscript ( x superscript 2 minus y superscript 2 ).” The second diagram just right of the first is similar except the x, y, and z labels have been replaced in each instance with the letter L. Only a pair of the orange balloon-like shapes are present and extend from the origin above and below along the vertical axis. An orange toroidal or donut shape is positioned around the origin, oriented through the x- and y- axes. This shape extends out to about a third of the length of the positive and negative regions of the x- and y- axes. This diagram is labeled, “d subscript ( z superscript 2 ).” The third through fifth diagrams, similar to the first, show four orange balloon-like shapes. These diagrams differ however in the orientation of the shapes along the axes and the x-, y-, and z-axis labels have each been replaced with the letter L. Planes are added to the figures to help show the orientation differences with these diagrams. In the third diagram, a green plane is oriented vertically through the length of the x-axis and a blue plane is oriented horizontally through the length of the y-axis. The balloon shapes extend from the origin to the spaces between the positive z- and negative y- axes, positive z- and positive y- axes, negative z- and negative y- axes, and negative z- and positive y- axes. This diagram is labeled, “d subscript ( y z ).” In the fourth diagram, a green plane is oriented vertically through the x- and y- axes and a blue plane is oriented horizontally through the length of the x-axis. The balloon shapes extend from the origin to the spaces between the positive z- and negative x- axes, positive z- and positive x- axes, negative z- and negative x- axes, and negative z- and positive x- axes. This diagram is labeled “d subscript ( x z ).” In the fifth diagram, a pink plane is oriented vertically through the length of the y-axis and a green plane is oriented vertically through the length of the x-axis. The balloon shapes extend from the origin to the spaces between the positive x- and negative y- axes, positive x- and positive y- axes, negative x- and negative y- axes, and negative x- and positive y- axes. This diagram is labeled, “d subscript ( x y ).”
The directional characteristics of the five d orbitals are shown here. The shaded portions indicate the phase of the orbitals. The ligands (L) coordinate along the axes. For clarity, the ligands have been omitted from the d x 2 y 2 orbital so that the axis labels could be shown.

In an uncomplexed metal ion in the gas phase, the electrons are distributed among the five d orbitals in accord with Hund's rule because the orbitals all have the same energy. However, when ligands coordinate to a metal ion, the energies of the d orbitals are no longer the same.

Questions & Answers

summarize halerambos & holbon
David Reply
the Three stages of Auguste Comte
Clementina Reply
what are agents of socialization
Antonio Reply
sociology of education
Nuhu Reply
definition of sociology of education
Nuhu
what is culture
Abdulrahim Reply
shared beliefs, values, and practices
AI-Robot
What are the two type of scientific method
ogunniran Reply
I'm willing to join you
Aceng Reply
what are the scientific method of sociology
Man
what is socialization
ogunniran Reply
the process wherein people come to understand societal norms and expectations, to accept society's beliefs, and to be aware of societal values
AI-Robot
scientific method in doing research
ogunniran
defimition of sickness in afica
Anita
Cosmology
ogunniran
Hmmm
ogunniran
list and explain the terms that found in society
REMMY Reply
list and explain the terms that found in society
Mukhtar
what are the agents of socialization
Antonio
Family Peer group Institution
Abdulwajud
I mean the definition
Antonio
ways of perceived deviance indifferent society
Naomi Reply
reasons of joining groups
SAM
to bring development to the nation at large
Hyellafiya
entails of consultative and consensus building from others
Gadama
World first Sociologist?
Abu
What is evolutionary model
Muhammad Reply
Evolution models refer to mathematical and computational representations of the processes involved in biological evolution. These models aim to simulate and understand how species change over time through mechanisms such as natural selection, genetic drift, and mutation. Evolutionary models can be u
faruk
what are the modern trends in religious behaviours
Selekeye Reply
what are social norms
Daniel Reply
shared standards of acceptable behavior by the group or appropriate behavior in a particular institution or those behaviors that are acceptable in a society
Lucius
that is how i understood it
Lucius
examples of societal norms
Diamond
Discuss the characteristics of the research located within positivist and the interpretivist paradigm
Tariro Reply
what is Industrialisation
Selekeye Reply
industrialization
Angelo
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask