<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the synthesis of transuranium nuclides
  • Explain nuclear fission and fusion processes
  • Relate the concepts of critical mass and nuclear chain reactions
  • Summarize basic requirements for nuclear fission and fusion reactors

After the discovery of radioactivity, the field of nuclear chemistry was created and developed rapidly during the early twentieth century. A slew of new discoveries in the 1930s and 1940s, along with World War II, combined to usher in the Nuclear Age in the mid-twentieth century. Science learned how to create new substances, and certain isotopes of certain elements were found to possess the capacity to produce unprecedented amounts of energy, with the potential to cause tremendous damage during war, as well as produce enormous amounts of power for society’s needs during peace.

Synthesis of nuclides

Nuclear transmutation is the conversion of one nuclide into another. It can occur by the radioactive decay of a nucleus, or the reaction of a nucleus with another particle. The first manmade nucleus was produced in Ernest Rutherford’s laboratory in 1919 by a transmutation reaction, the bombardment of one type of nuclei with other nuclei or with neutrons. Rutherford bombarded nitrogen atoms with high-speed α particles from a natural radioactive isotope of radium and observed protons resulting from the reaction:

7 14 N + 2 4 He 8 17 O + 1 1 H

The 8 17 O and 1 1 H nuclei that are produced are stable, so no further (nuclear) changes occur.

To reach the kinetic energies necessary to produce transmutation reactions, devices called particle accelerators are used. These devices use magnetic and electric fields to increase the speeds of nuclear particles. In all accelerators, the particles move in a vacuum to avoid collisions with gas molecules. When neutrons are required for transmutation reactions, they are usually obtained from radioactive decay reactions or from various nuclear reactions occurring in nuclear reactors. The Chemistry in Everyday Life feature that follows discusses a famous particle accelerator that made worldwide news.

Cern particle accelerator

Located near Geneva, the CERN (“Conseil Européen pour la Recherche Nucléaire,” or European Council for Nuclear Research) Laboratory is the world’s premier center for the investigations of the fundamental particles that make up matter. It contains the 27-kilometer (17 mile) long, circular Large Hadron Collider (LHC), the largest particle accelerator in the world ( [link] ). In the LHC, particles are boosted to high energies and are then made to collide with each other or with stationary targets at nearly the speed of light. Superconducting electromagnets are used to produce a strong magnetic field that guides the particles around the ring. Specialized, purpose-built detectors observe and record the results of these collisions, which are then analyzed by CERN scientists using powerful computers.

Two photos are shown and labeled “a” and “b.” Photo a shows an aerial view of the Large Hadron Collider. Photo b shows a tunnel of concrete with rails on the ground and tubes and wires running along the wall. Two people walk along the tunnel.
A small section of the LHC is shown with workers traveling along it. (credit: Christophe Delaere)

In 2012, CERN announced that experiments at the LHC showed the first observations of the Higgs boson, an elementary particle that helps explain the origin of mass in fundamental particles. This long-anticipated discovery made worldwide news and resulted in the awarding of the 2103 Nobel Prize in Physics to François Englert and Peter Higgs, who had predicted the existence of this particle almost 50 years previously.

Questions & Answers

Types of electrolytes
Treasure Reply
list 6 subatomic particles and their mass, speed and charges
Dubem Reply
combination of acid and base
Ayibiro Reply
that salt
calculate the mass in gram of NaOH present in 250cm3 of 0.1mol/dm3 of its solution
Omego Reply
The mass is 1.0grams. First you multiply the molecular weight and molarity which is 39.997g/mol x 0.1mol/dm3= 3.9997g/dm3. Then you convert dm3 to cm3. 1dm3 =1000cm3. In this case you would divide 3.9997 by 1000 which would give you 3.9997*10^-3 g/cm3. To get the mass you multiply 3.9997*10^-3 and
250cm3 and get the mass as .999925, with significant figures the answer is 1.0 grams
nitrogen, phosphorus, arsenic, antimony and Bismuth
faith Reply
What is d electronic configuration of for group 5
Miracle Reply
Can I know d electronic configuration of for group 5 elements
2:5, 2:8:5, 2:8:8:5,...
Pls what are d names of elements found in group 5
define define. define
Muh Reply
what is enthalpy
Ayilaran Reply
total heat contents of the system is called enthalpy, it is state function.
background of chemistry
Banji Reply
what is the hybridisation of carbon in formic acid?
Maham Reply
sp2 hybridization
what is the first element
Josh Reply
Element that has positive charge and its non metal Name the element
account for the properties of organic compounds
mercy Reply
properties of organic compounds
what's the difference between molecules and compounds
Amha Reply
A compound can be a molecule however compounds must contain more than one element. For example ozone, O3 is a molecule but not a compound.
what is che? nd what is mistry?
What's elixir?
An Elixir is a substance held capable of changing base metals into Gold.
Give an example for each of the six groups of element
Francis Reply

Get the best Chemistry course in your pocket!

Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?