<< Chapter < Page Chapter >> Page >

Nuclear fuels

Nuclear fuel consists of a fissionable isotope, such as uranium-235, which must be present in sufficient quantity to provide a self-sustaining chain reaction. In the United States, uranium ores contain from 0.05–0.3% of the uranium oxide U 3 O 8 ; the uranium in the ore is about 99.3% nonfissionable U-238 with only 0.7% fissionable U-235. Nuclear reactors require a fuel with a higher concentration of U-235 than is found in nature; it is normally enriched to have about 5% of uranium mass as U-235. At this concentration, it is not possible to achieve the supercritical mass necessary for a nuclear explosion. Uranium can be enriched by gaseous diffusion (the only method currently used in the US), using a gas centrifuge, or by laser separation.

In the gaseous diffusion enrichment plant where U-235 fuel is prepared, UF 6 (uranium hexafluoride) gas at low pressure moves through barriers that have holes just barely large enough for UF 6 to pass through. The slightly lighter 235 UF 6 molecules diffuse through the barrier slightly faster than the heavier 238 UF 6 molecules. This process is repeated through hundreds of barriers, gradually increasing the concentration of 235 UF 6 to the level needed by the nuclear reactor. The basis for this process, Graham’s law, is described in the chapter on gases. The enriched UF 6 gas is collected, cooled until it solidifies, and then taken to a fabrication facility where it is made into fuel assemblies. Each fuel assembly consists of fuel rods that contain many thimble-sized, ceramic-encased, enriched uranium (usually UO 2 ) fuel pellets. Modern nuclear reactors may contain as many as 10 million fuel pellets. The amount of energy in each of these pellets is equal to that in almost a ton of coal or 150 gallons of oil.

Nuclear moderators

Neutrons produced by nuclear reactions move too fast to cause fission (refer back to [link] ). They must first be slowed to be absorbed by the fuel and produce additional nuclear reactions. A nuclear moderator    is a substance that slows the neutrons to a speed that is low enough to cause fission. Early reactors used high-purity graphite as a moderator. Modern reactors in the US exclusively use heavy water ( 1 2 H 2 O ) or light water (ordinary H 2 O), whereas some reactors in other countries use other materials, such as carbon dioxide, beryllium, or graphite.

Reactor coolants

A nuclear reactor coolant    is used to carry the heat produced by the fission reaction to an external boiler and turbine, where it is transformed into electricity. Two overlapping coolant loops are often used; this counteracts the transfer of radioactivity from the reactor to the primary coolant loop. All nuclear power plants in the US use water as a coolant. Other coolants include molten sodium, lead, a lead-bismuth mixture, or molten salts.

Control rods

Nuclear reactors use control rods ( [link] ) to control the fission rate of the nuclear fuel by adjusting the number of slow neutrons present to keep the rate of the chain reaction at a safe level. Control rods are made of boron, cadmium, hafnium, or other elements that are able to absorb neutrons. Boron-10, for example, absorbs neutrons by a reaction that produces lithium-7 and alpha particles:

Questions & Answers

What a homogenous mixture
Allison Reply
Define homologous series
Chizoba Reply
when iron is exposed to moisture and it rusts,the value of deltaG for the reaction is
Mary Reply
what is chemistry
Siyanbola Reply
define aci according to Lewis
Ryhanna Reply
an acid is an electron pair acceptor according to lewis
What is a homogenous mixture
the third ionization energy of aluminium
sanmi Reply
name the allotrope of carbon used in gas masks
Moses Reply
Discuss the synthesis of sucrose
Ojiya Reply
What is a glycoside and discuss the formation
explain the transitioning of glucose molecules from Fischer projection of glucose to the Haworth projection
Rosey Reply
what is quantum
hezekiah Reply
what are metalliod
Metalloids are substances having the characteristics of both metals and non-metals
what is acid
define acid according to lewis
what is valency
odukoya Reply
The number of chemical bonds the atoms of a certain element can form.
what is ionization energy?
Hussniz Reply
ionization energy is qualitatively defined as the minimum amount of energy required to remove the most loosely bound electron, the valence electron, of an isolated neutral gaseous atom, molecule or io
If a sample of neon gas at 25.00∘C and 0.500 atm is heated at a constant volume until the pressure is 0.850 atm, what must be the final temperature of the gas in Kelvin? Use −273.15∘C for absolute zero. Report your answer with three significant figures.
Philomina Reply
The final temperature of the gas in Kelvin is 506.855
Define the term chemistry
Ahmed Reply
explain law of definite proportion
yes same idea

Get the best Chemistry course in your pocket!

Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?