# 5.3 Enthalpy  (Page 7/25)

 Page 7 / 25

## Writing reaction equations for $\text{Δ}{H}_{\text{f}}^{°}$

Write the heat of formation reaction equations for:

(a) C 2 H 5 OH( l )

(b) Ca 3 (PO 4 ) 2 ( s )

## Solution

Remembering that $\text{Δ}{H}_{\text{f}}^{°}$ reaction equations are for forming 1 mole of the compound from its constituent elements under standard conditions, we have:

(a) $2\text{C}\left(s,\phantom{\rule{0.2em}{0ex}}\text{graphite}\right)+3{\text{H}}_{2}\left(g\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{C}}_{2}{\text{H}}_{5}\text{OH}\left(l\right)$

(b) $3\text{Ca}\left(s\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{P}}_{4}\left(s\right)+4{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Ca}}_{3}\left({\text{PO}}_{4}{\right)}_{2}\left(s\right)$

Note: The standard state of carbon is graphite, and phosphorus exists as P 4 .

Write the heat of formation reaction equations for:

(a) C 2 H 5 OC 2 H 5 ( l )

(b) Na 2 CO 3 ( s )

(a) $4\text{C}\left(s,\phantom{\rule{0.2em}{0ex}}\text{graphite}\right)+5{\text{H}}_{2}\left(g\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{C}}_{2}{\text{H}}_{5}{\text{OC}}_{2}{\text{H}}_{5}\left(l\right);$ (b) $2\text{Na}\left(s\right)+\text{C}\left(s,\phantom{\rule{0.2em}{0ex}}\text{graphite}\right)+\phantom{\rule{0.1em}{0ex}}\frac{3}{2}{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{Na}}_{2}{\text{CO}}_{3}\left(s\right)$

## Hess’s law

There are two ways to determine the amount of heat involved in a chemical change: measure it experimentally, or calculate it from other experimentally determined enthalpy changes. Some reactions are difficult, if not impossible, to investigate and make accurate measurements for experimentally. And even when a reaction is not hard to perform or measure, it is convenient to be able to determine the heat involved in a reaction without having to perform an experiment.

This type of calculation usually involves the use of Hess’s law    , which states: If a process can be written as the sum of several stepwise processes, the enthalpy change of the total process equals the sum of the enthalpy changes of the various steps . Hess’s law is valid because enthalpy is a state function: Enthalpy changes depend only on where a chemical process starts and ends, but not on the path it takes from start to finish. For example, we can think of the reaction of carbon with oxygen to form carbon dioxide as occurring either directly or by a two-step process. The direct process is written:

$\text{C}\left(s\right)+{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{CO}}_{2}\left(g\right)\phantom{\rule{3em}{0ex}}\text{Δ}{H}_{298}^{°}=-394\phantom{\rule{0.2em}{0ex}}\text{kJ}$

In the two-step process, first carbon monoxide is formed:

$\text{C}\left(s\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{CO}\left(g\right)\phantom{\rule{3em}{0ex}}\text{Δ}{H}_{298}^{°}=-111\phantom{\rule{0.2em}{0ex}}\text{kJ}$

Then, carbon monoxide reacts further to form carbon dioxide:

$\text{CO}\left(g\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{CO}}_{2}\left(g\right)\phantom{\rule{3em}{0ex}}\text{Δ}{H}_{298}^{°}=-283\phantom{\rule{0.2em}{0ex}}\text{kJ}$

The equation describing the overall reaction is the sum of these two chemical changes:

$\begin{array}{}\\ \text{Step 1: C}\left(s\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{CO}\left(g\right)\\ \underset{¯}{\text{Step 2: CO}\left(g\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{CO}}_{2}\left(g\right)}\\ \text{Sum: C}\left(s\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{O}}_{2}\left(g\right)+\text{CO}\left(g\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{CO}\left(g\right)+{\text{CO}}_{2}\left(g\right)\end{array}$

Because the CO produced in Step 1 is consumed in Step 2, the net change is:

$\text{C}\left(s\right)+{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{CO}}_{2}\left(g\right)$

According to Hess’s law, the enthalpy change of the reaction will equal the sum of the enthalpy changes of the steps. We can apply the data from the experimental enthalpies of combustion in [link] to find the enthalpy change of the entire reaction from its two steps:

$\begin{array}{ll}\text{C}\left(s\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}\text{CO}\left(g\right)\hfill & \text{Δ}{H}_{298}^{°}=-111\phantom{\rule{0.2em}{0ex}}\text{kJ}\hfill \\ \frac{\text{CO}\left(g\right)+\phantom{\rule{0.1em}{0ex}}\frac{1}{2}{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{CO}}_{2}\left(g\right)}{\text{C}\left(s\right)+{\text{O}}_{2}\left(g\right)\phantom{\rule{0.2em}{0ex}}⟶\phantom{\rule{0.2em}{0ex}}{\text{CO}}_{2}\left(g\right)\phantom{\rule{1em}{0ex}}}\hfill & \frac{\text{Δ}{H}_{298}^{°}=-283\phantom{\rule{0.2em}{0ex}}\text{kJ}}{\text{Δ}{H}_{298}^{°}=-394\phantom{\rule{0.2em}{0ex}}\text{kJ}}\hfill \end{array}$

The result is shown in [link] . We see that Δ H of the overall reaction is the same whether it occurs in one step or two. This finding (overall Δ H for the reaction = sum of Δ H values for reaction “steps” in the overall reaction) is true in general for chemical and physical processes.

who are the alchemist?
alchemy science of transmutation. typically it is aim at tranforming lead to or other base metals to gold and the creation of the philosophers stone which in reality isn't a stone it's something priceless something we all need for coming times. don't be fooled
Kendrick
read Corinthians 5 verses 50 to the end of the chapter then read revelations chapter 2 verse 17
Kendrick
The word "Alchemy" comes from the forgotten name for Ancient Egypt, Khemmet. Khem was the name for the Egyptian Empire, but the actual land of Egypt was called Khemmet because the "T" on the end of a word denoted a physical location on Earth and not just an idea.
Michael
Wow!
mendie
What's the mass number of carbon
Akinbola
mass number of carbon is 12.
Nnenna
wat d atomic number of oxygen
safiya
atomic number of oxygen is 8
Nnenna
which quantum number divides shell into orbitals?
azimuthal
Emmanuel
hi
Charlie
azimuthal
reinhard
azimuthal
Charlie
what is atom
an atom is a smallest indivisible part of an element
Henry
an atom is the smallest part of an element that takes part in a chemical reaction
Nana
wat is neutralization
when any acid reacts with base to decrease it's acidity or vice-versa to form salt and solvent.. which is called neutralization
Santosh
explain buffer
Organic
buffer is a solution which resists changes in pH when acid or alkali added to it..
Santosh
hello, who is online
UTHMAN
buffer is the solution which resist the change in pH by addition of small amount of acid or alkali to it
KAUSIK
neutralisation is the process of mixing of a acid and a base to form water and corresponding salt
KAUSIK
how to solve equation on this
what are the elent of ionic and covalent bonding
Princewill
what is gases
Its one of the fundamental sate of matter alone side with liquid, solid and plasma
John
What is chemical bonding
John
To my own definitions. It's a unit of measurement to express the amount of a chemical substance.
What is mole
It's the unit of measurements used to express the amount of chemical substance.
Ozoaniehe
What is pressure
force over area
Jake
force applied per unit area
john
force applied per unit area
Prajapati
Why does carbonic acid don't react with metals
Why does carbonic acid don't react with metal
Some metals will react depending on their Standard Electrode Potential. Carbonic acid is a very weak acid (i.e. a low hydrogen ion concentration) so the rate of reaction is very low.
Paul
sample of carbon-12 has a mass of 6.00g. How many atoms of carbon-12 are in the sample
a sample of carbon-12 has a mass of 6.00g. How many atoms of carbon-12 are in the sample
an object of weight 10N immersed in a liquid displaces a quantity of d liquid.if d liquid displaced weights 6N.determine d up thrust of the object
how human discover earth is not flat
We don't fall off. If set off in any direction in a straight line and keep going. You'll end up back where you started.
earth is spherical
Unique
Also, every other planet is spherical as that is the most energy efficient shape. gravity pulls equally on all areas. Sphere.