Osmotic pressure and changes in freezing point, boiling point, and vapor pressure are directly proportional to the concentration of solute present. Consequently, we can use a measurement of one of these properties to determine the molar mass of the solute from the measurements.
Determination of a molar mass from a freezing point depression
A solution of 4.00 g of a nonelectrolyte dissolved in 55.0 g of benzene is found to freeze at 2.32 °C. What is the molar mass of this compound?
Solution
We can solve this problem using the following steps.
Determine the change in freezing point from the observed freezing point and the freezing point of pure benzene (
[link] ).
Determination of a molar mass from osmotic pressure
A 0.500 L sample of an aqueous solution containing 10.0 g of hemoglobin has an osmotic pressure of 5.9 torr at 22 °C. What is the molar mass of hemoglobin?
Solution
Here is one set of steps that can be used to solve the problem:
Convert the osmotic pressure to atmospheres, then determine the molar concentration from the osmotic pressure.
As noted previously in this module, the colligative properties of a solution depend only on the number, not on the kind, of solute species dissolved. For example, 1 mole of any nonelectrolyte dissolved in 1 kilogram of solvent produces the same lowering of the freezing point as does 1 mole of any other nonelectrolyte. However, 1 mole of sodium chloride (an electrolyte) forms
2 moles of ions when dissolved in solution. Each individual ion produces the same effect on the freezing point as a single molecule does.
Questions & Answers
calculate the mass in gram of NaOH present in 250cm3 of 0.1mol/dm3 of its solution
The mass is 1.0grams. First you multiply the molecular weight and molarity which is 39.997g/mol x 0.1mol/dm3= 3.9997g/dm3. Then you convert dm3 to cm3. 1dm3 =1000cm3. In this case you would divide 3.9997 by 1000 which would give you 3.9997*10^-3 g/cm3. To get the mass you multiply 3.9997*10^-3 and
Kokana
250cm3 and get the mass as .999925, with significant figures the answer is 1.0 grams
Kokana
nitrogen, phosphorus, arsenic, antimony and Bismuth