<< Chapter < Page Chapter >> Page >
This figure shows three scenarios relating to red blood cell membranes. In a, H subscript 2 O has two arrows drawn from it pointing into a red disk. Beneath it in a circle are eleven similar disks with a bulging appearance, one of which appears to have burst with blue liquid erupting from it. In b, the image is similar except that rather than having two arrows pointing into the red disk, one points in and a second points out toward the H subscript 2 O. In the circle beneath, twelve of the red disks are present. In c, both arrows are drawn from a red shriveled disk toward the H subscript 2 O. In the circle below, twelve shriveled disks are shown.
Red blood cell membranes are water permeable and will (a) swell and possibly rupture in a hypotonic solution; (b) maintain normal volume and shape in an isotonic solution; and (c) shrivel and possibly die in a hypertonic solution. (credit a/b/c: modifications of work by “LadyofHats”/Wikimedia commons)

Determination of molar masses

Osmotic pressure and changes in freezing point, boiling point, and vapor pressure are directly proportional to the concentration of solute present. Consequently, we can use a measurement of one of these properties to determine the molar mass of the solute from the measurements.

Determination of a molar mass from a freezing point depression

A solution of 4.00 g of a nonelectrolyte dissolved in 55.0 g of benzene is found to freeze at 2.32 °C. What is the molar mass of this compound?

Solution

We can solve this problem using the following steps.

This is diagram with five boxes oriented horizontally and linked together with arrows numbered 1 to 4 pointing from each box in succession to the next one to the right. The first box is labeled, “Freezing point of solution.” Arrow 1 points from this box to a second box labeled, “delta T subscript f.” Arrow 2 points from this box to to a third box labeled “Molal concentration of compound.” Arrow labeled 3 points from this box to a fourth box labeled, “Moles of compound in sample.” Arrow 4 points to a fifth box labeled, “Molar mass of compound.”
  1. Determine the change in freezing point from the observed freezing point and the freezing point of pure benzene ( [link] ).
    Δ T f = 5.5 ° C 2.32 ° C = 3.2 ° C
  2. Determine the molal concentration from K f , the freezing point depression constant for benzene ( [link] ), and Δ T f .
    Δ T f = K f m m = Δ T f K f = 3.2 ° C 5.12 ° C m −1 = 0.63 m
  3. Determine the number of moles of compound in the solution from the molal concentration and the mass of solvent used to make the solution.
    Moles of solute = 0.62 mol solute 1.00 kg solvent × 0.0550 kg solvent = 0.035 mol
  4. Determine the molar mass from the mass of the solute and the number of moles in that mass.
    Molar mass = 4.00 g 0.034 mol = 1.2 × 10 2 g/mol

Check your learning

A solution of 35.7 g of a nonelectrolyte in 220.0 g of chloroform has a boiling point of 64.5 °C. What is the molar mass of this compound?

Answer:

1.8 × 10 2 g/mol

Got questions? Get instant answers now!

Determination of a molar mass from osmotic pressure

A 0.500 L sample of an aqueous solution containing 10.0 g of hemoglobin has an osmotic pressure of 5.9 torr at 22 °C. What is the molar mass of hemoglobin?

Solution

Here is one set of steps that can be used to solve the problem:

This is a diagram with four boxes oriented horizontally and linked together with arrows numbered 1 to 3 pointing from each box in succession to the next one to the right. The first box is labeled, “Osmotic pressure.” Arrow 1 points from this box to a second box labeled, “Molar concentration.” Arrow 2 points from this box to to a third box labeled, “Moles of hemoglobin in sample.” Arrow labeled 3 points from this box to a fourth box labeled, “Molar mass of hemoglobin.”
  1. Convert the osmotic pressure to atmospheres, then determine the molar concentration from the osmotic pressure.
    Π = 5.9 torr × 1 atm 760 torr = 7.8 × 10 −3 atm Π = MRT M = Π R T = 7.8 × 10 −3 atm ( 0.08206 L atm/mol K ) ( 295 K ) = 3.2 × 10 −4 M
  2. Determine the number of moles of hemoglobin in the solution from the concentration and the volume of the solution.
    moles of hemoglobin = 3.2 × 10 −4 mol 1 L solution × 0.500 L solution = 1.6 × 10 −4 mol
  3. Determine the molar mass from the mass of hemoglobin and the number of moles in that mass.
    molar mass = 10.0 g 1.6 × 10 −4 mol = 6.2 × 10 4 g/mol

Check your learning

What is the molar mass of a protein if a solution of 0.02 g of the protein in 25.0 mL of solution has an osmotic pressure of 0.56 torr at 25 °C?

Answer:

2.7 × 10 4 g/mol

Got questions? Get instant answers now!

Colligative properties of electrolytes

As noted previously in this module, the colligative properties of a solution depend only on the number, not on the kind, of solute species dissolved. For example, 1 mole of any nonelectrolyte dissolved in 1 kilogram of solvent produces the same lowering of the freezing point as does 1 mole of any other nonelectrolyte. However, 1 mole of sodium chloride (an electrolyte) forms 2 moles of ions when dissolved in solution. Each individual ion produces the same effect on the freezing point as a single molecule does.

Questions & Answers

Why does carbonic acid don't react with metals
Aditya Reply
Why does carbonic acid don't react with metal
Aditya
sample of carbon-12 has a mass of 6.00g. How many atoms of carbon-12 are in the sample
Emokiniovo Reply
a sample of carbon-12 has a mass of 6.00g. How many atoms of carbon-12 are in the sample
Sharmin Reply
an object of weight 10N immersed in a liquid displaces a quantity of d liquid.if d liquid displaced weights 6N.determine d up thrust of the object
ugonna Reply
how human discover earth is not flat
Jason Reply
We don't fall off. If set off in any direction in a straight line and keep going. You'll end up back where you started.
Adelle
earth is spherical
Unique
Also, every other planet is spherical as that is the most energy efficient shape. gravity pulls equally on all areas. Sphere.
Adelle
what is an ion
Unique Reply
an atom that loses or gains an electron. Atoms normally have the same number of protons and electrons, therefore there is no charge as each + cancels out each -. When an atom loses an electron, it has more protons that electrons. Therefore the ion is called positive.
Adelle
When an atom gains electrons it has more of them than protons. Therefore the ion is negative. You cannot change the number of protons as this results in a different element.
Adelle
Gaining or losing electrons is based around the octet rule. 8 electrons in the outer shell is the most stable electron configuration (for the first three rows in the periodic table. After that it gets confusing so don't worry) So all atoms want to achieve this configuration.
Adelle
Wat is chemical bonding
Precious Reply
how to determine the number of atoms and the mass of zirconium, silicon, and oxygen found in 0.3384 mol of zircon4
Denisha Reply
can you please help
Badmus
what is a catalyst
William Reply
A substance that speeds up the rate of a given reaction but does not react with any reactants
Brandon
something that speeds up a chemical reaction without being used up itself. It lowers the activation energy
Adelle
something that speed up a chemical reaction without its self been used
Zainab
Faraday's first law of electrolysis state that...
Mgbachi Reply
the mass of a substance librated during electrolysis is directly proportional to the quantity of electricity passing through the electrolyte
Zainab
nice
Owolabi
greeaat
Abdul
another question
Owolabi
ys
Abdul
good
olanrewaju
gud one pls write it mathematically
Lekan
How can ionic bonds dissociate in aqueous solution
Andrew Reply
Because of the polarity of both ionic compounds and water the ionic compound will dissolve as "like dissolves like", and the molecule forms bonds with the water.
Claud
are all aqueous solutions water contained?
blossom
No, but a lot are.
Claud
it dissociate when d metal is combined wit oxygen
Lekan
I wanna understand more about isomers
Emmanuel Reply
Isomers are essentially the same molecules of one particular substance, except with different bonding points along the molecule. if you want a better example, look up xylene, p-xylene, and m-xylene. isomers are more for organic chemistry
Aaron
what is catenation
Oladuji Reply
The property of carbon to form long chain with other atom!
Lareb
hydrocarbons can be classified as..1.Aliphatic compounds 2.cyclic compounds.under aliphatic compounds there are two types saturated hydrocarbons(alkanes) and unsaturated hydrocarbons(alkenes and alkynes).
Niroshan Reply
thanks but i have also heard of aromatic hydrocarbons
emmanuel
so am kinda confused
emmanuel
how
Emmanuel
hydrocarbons are classified into 2 namely: aliphatic compound and aromatic compound
Mgbachi
aliphatic compound and aromatic compound
Mgbachi
hello i have big problems in understanding organic chemistry
emmanuel Reply
what are the main types of hydrocarbon
emmanuel
I'm not exactly sure what you mean by 'main types' but I think you should be talking about aliphatic and cyclic hydrocarbons
blossom
What's the difference?
Claud
what is the difference between atomic theory and modern atomic theory
Yakubu
Or are you referring to the types being alkane, alkene and alkyne? alkane - hydrocarbon molecule with only single bonds alkene - hydrocarbon molecule with at least 1 double bond alkyne - hydrocarbon with at least 1 triple bond. alkane least reactive, alkene in the middle alkynes most reactive
Adelle
I think that is what he is talking about
IBRAHIM
jamiu I'm here so whatsup
promise

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask