<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Extend the concept of wave–particle duality that was observed in electromagnetic radiation to matter as well
  • Understand the general idea of the quantum mechanical description of electrons in an atom, and that it uses the notion of three-dimensional wave functions, or orbitals, that define the distribution of probability to find an electron in a particular part of space
  • List and describe traits of the four quantum numbers that form the basis for completely specifying the state of an electron in an atom

Bohr’s model explained the experimental data for the hydrogen atom and was widely accepted, but it also raised many questions. Why did electrons orbit at only fixed distances defined by a single quantum number n = 1, 2, 3, and so on, but never in between? Why did the model work so well describing hydrogen and one-electron ions, but could not correctly predict the emission spectrum for helium or any larger atoms? To answer these questions, scientists needed to completely revise the way they thought about matter.

Behavior in the microscopic world

We know how matter behaves in the macroscopic world—objects that are large enough to be seen by the naked eye follow the rules of classical physics. A billiard ball moving on a table will behave like a particle: It will continue in a straight line unless it collides with another ball or the table cushion, or is acted on by some other force (such as friction). The ball has a well-defined position and velocity (or a well-defined momentum, p = mv, defined by mass m and velocity v ) at any given moment. In other words, the ball is moving in a classical trajectory. This is the typical behavior of a classical object.

When waves interact with each other, they show interference patterns that are not displayed by macroscopic particles such as the billiard ball. For example, interacting waves on the surface of water can produce interference patters similar to those shown on [link] . This is a case of wave behavior on the macroscopic scale, and it is clear that particles and waves are very different phenomena in the macroscopic realm.

A photograph is shown of ripples in water. The ripples display an interference pattern with each other.
An interference pattern on the water surface is formed by interacting waves. The waves are caused by reflection of water from the rocks. (credit: modification of work by Sukanto Debnath)

As technological improvements allowed scientists to probe the microscopic world in greater detail, it became increasingly clear by the 1920s that very small pieces of matter follow a different set of rules from those we observe for large objects. The unquestionable separation of waves and particles was no longer the case for the microscopic world.

One of the first people to pay attention to the special behavior of the microscopic world was Louis de Broglie . He asked the question: If electromagnetic radiation can have particle-like character, can electrons and other submicroscopic particles exhibit wavelike character? In his 1925 doctoral dissertation, de Broglie extended the wave–particle duality of light that Einstein used to resolve the photoelectric-effect paradox to material particles. He predicted that a particle with mass m and velocity v (that is, with linear momentum p ) should also exhibit the behavior of a wave with a wavelength value λ , given by this expression in which h is the familiar Planck’s constant:

Questions & Answers

what's kinetic energy
Charity Reply
what is anion?
Hussniz Reply
an anion is a positively charge ion
an anion is a negatively charged ion
And anion is a negatively charged ion which move towards the anode which is positively charged.
what is matter
Henry Reply
what is pressure
what is water?
Scarcies Reply
hydrogen gas burned into oxygen gas which forms a polar molecule, has a defenate shape volume but not shape. at 20 degrees Celsius exists as an aqueous solution. Is a solvent that dissolves many solutes into solution. And can act as an acid or a base.
Obi Reply
by mixing
it is less dense than water
Erastus Reply
can cooking gas be durable in gallon. ..
reason pls
What is happening
Oluchi Reply
Why does ice float on water?
As it cools, olive oil slowly soldifies and froms a solid over a range of temperatures. Which best describes the solid?
Tammie Reply
definition of a sample
ashley Reply
a small part or quantity intended to show what the whole is like
What does kj stand for ? or just k. example - 371K
Katr Reply
kilojoules or Kelvin
what is atom
divinegift Reply
atom is anything that has weight and can occupy space
atom is the smallest particle of an element that can neitherbe divided nor destroyed
atom is the smallest indivisible particle of an element.
atom is the smallest particle of an element that can neither be created,subdivided or destroyed
All wrong
Do you know that atoms can further be devided
Go and read 📘 up Dalton atomic theory and who disproved.. Read 📘 up atomic theory
an atom is the smallest particle of an element that can take part in a chemical reaction
what is anion?
what is a structure of atomic
Deren Reply
WATS atomic structure?
what is the meaning of intermolecular force
Eunice Reply
is the force of attraction that exist between two or more molecules
What is a primary standard solution ?
a known solution
Characteristic of a primary standard solution
pauli's exclusion is based on what?
avdhesh Reply
quantum theory
What is greatest modification made in dalton's atomic theory?
Ngwesse Reply

Get the best Chemistry course in your pocket!

Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?