6.3 Development of quantum theory

 Page 1 / 25
By the end of this section, you will be able to:
• Extend the concept of wave–particle duality that was observed in electromagnetic radiation to matter as well
• Understand the general idea of the quantum mechanical description of electrons in an atom, and that it uses the notion of three-dimensional wave functions, or orbitals, that define the distribution of probability to find an electron in a particular part of space
• List and describe traits of the four quantum numbers that form the basis for completely specifying the state of an electron in an atom

Bohr’s model explained the experimental data for the hydrogen atom and was widely accepted, but it also raised many questions. Why did electrons orbit at only fixed distances defined by a single quantum number n = 1, 2, 3, and so on, but never in between? Why did the model work so well describing hydrogen and one-electron ions, but could not correctly predict the emission spectrum for helium or any larger atoms? To answer these questions, scientists needed to completely revise the way they thought about matter.

Behavior in the microscopic world

We know how matter behaves in the macroscopic world—objects that are large enough to be seen by the naked eye follow the rules of classical physics. A billiard ball moving on a table will behave like a particle: It will continue in a straight line unless it collides with another ball or the table cushion, or is acted on by some other force (such as friction). The ball has a well-defined position and velocity (or a well-defined momentum, p = mv, defined by mass m and velocity v ) at any given moment. In other words, the ball is moving in a classical trajectory. This is the typical behavior of a classical object.

When waves interact with each other, they show interference patterns that are not displayed by macroscopic particles such as the billiard ball. For example, interacting waves on the surface of water can produce interference patters similar to those shown on [link] . This is a case of wave behavior on the macroscopic scale, and it is clear that particles and waves are very different phenomena in the macroscopic realm.

As technological improvements allowed scientists to probe the microscopic world in greater detail, it became increasingly clear by the 1920s that very small pieces of matter follow a different set of rules from those we observe for large objects. The unquestionable separation of waves and particles was no longer the case for the microscopic world.

One of the first people to pay attention to the special behavior of the microscopic world was Louis de Broglie . He asked the question: If electromagnetic radiation can have particle-like character, can electrons and other submicroscopic particles exhibit wavelike character? In his 1925 doctoral dissertation, de Broglie extended the wave–particle duality of light that Einstein used to resolve the photoelectric-effect paradox to material particles. He predicted that a particle with mass m and velocity v (that is, with linear momentum p ) should also exhibit the behavior of a wave with a wavelength value λ , given by this expression in which h is the familiar Planck’s constant:

what's kinetic energy
what is anion?
an anion is a positively charge ion
Thnkz
Hussniz
an anion is a negatively charged ion
Johnson
And anion is a negatively charged ion which move towards the anode which is positively charged.
Ngwesse
what is matter
what is pressure
Henry
what is water?
hydrogen gas burned into oxygen gas which forms a polar molecule, has a defenate shape volume but not shape. at 20 degrees Celsius exists as an aqueous solution. Is a solvent that dissolves many solutes into solution. And can act as an acid or a base.
David
HOW CAN ETHANOL BE PREPARED FORM CASSAVA.... (WITH EQUATION)
by mixing
Henry
it is less dense than water
can cooking gas be durable in gallon. ..
mowete
no
PRINCESS
reason pls
mowete
What is happening
Why does ice float on water?
Ngwesse
As it cools, olive oil slowly soldifies and froms a solid over a range of temperatures. Which best describes the solid?
definition of a sample
a small part or quantity intended to show what the whole is like
Abdull
What does kj stand for ? or just k. example - 371K
kilojoules or Kelvin
Annie
what is atom
atom is anything that has weight and can occupy space
Neutons
atom is the smallest particle of an element that can neitherbe divided nor destroyed
clin
atom is the smallest indivisible particle of an element.
Igbayima
atom is the smallest particle of an element that can neither be created,subdivided or destroyed
Gbolahan
All wrong
Do you know that atoms can further be devided
Go and read 📘 up Dalton atomic theory and who disproved.. Read 📘 up atomic theory
an atom is the smallest particle of an element that can take part in a chemical reaction
Anyebem
good@anyebem
Henry
what is anion?
Hussniz
what is a structure of atomic
WATS atomic structure?
mowete
what is the meaning of intermolecular force
is the force of attraction that exist between two or more molecules
Johnson
What is a primary standard solution ?
Duval
a known solution
Fiko
Characteristic of a primary standard solution
Duval
pauli's exclusion is based on what?
quantum theory
Charles
What is greatest modification made in dalton's atomic theory?