<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Derive chemical equations from narrative descriptions of chemical reactions.
  • Write and balance chemical equations in molecular, total ionic, and net ionic formats.

The preceding chapter introduced the use of element symbols to represent individual atoms. When atoms gain or lose electrons to yield ions, or combine with other atoms to form molecules, their symbols are modified or combined to generate chemical formulas that appropriately represent these species. Extending this symbolism to represent both the identities and the relative quantities of substances undergoing a chemical (or physical) change involves writing and balancing a chemical equation    . Consider as an example the reaction between one methane molecule (CH 4 ) and two diatomic oxygen molecules (O 2 ) to produce one carbon dioxide molecule (CO 2 ) and two water molecules (H 2 O). The chemical equation representing this process is provided in the upper half of [link] , with space-filling molecular models shown in the lower half of the figure.

This figure shows a balanced chemical equation followed below by a representation of the equation using space-filling models. The equation reads C H subscript 4 plus 2 O subscript 2 arrow C O subscript 2 plus 2 H subscript 2 O. Under the C H subscript 4, the molecule is shown with a central black sphere, representing a C atom, to which 4 smaller white spheres, representing H atoms, are distributed evenly around. All four H atoms are bonded to the central black C atom. This is followed by a plus sign. Under the 2 O subscript 2, two molecules are shown. The molecules are each composed of two red spheres bonded together. The red spheres represent O atoms. To the right of an arrow and under the C O subscript 2, appears a single molecule with a black central sphere with two red spheres bonded to the left and right. Following a plus sign and under the 2 H subscript 2 O, are two molecules, each with a central red sphere and two smaller white spheres attached to the lower right and lower left sides of the central red sphere. Note that in space filling models of molecules, spheres appear slightly compressed in regions where there is a bond between two atoms.
The reaction between methane and oxygen to yield carbon dioxide and water (shown at bottom) may be represented by a chemical equation using formulas (top).

This example illustrates the fundamental aspects of any chemical equation:

  1. The substances undergoing reaction are called reactants , and their formulas are placed on the left side of the equation.
  2. The substances generated by the reaction are called products , and their formulas are placed on the right sight of the equation.
  3. Plus signs (+) separate individual reactant and product formulas, and an arrow (⟶) separates the reactant and product (left and right) sides of the equation.
  4. The relative numbers of reactant and product species are represented by coefficients (numbers placed immediately to the left of each formula). A coefficient of 1 is typically omitted.

It is common practice to use the smallest possible whole-number coefficients in a chemical equation, as is done in this example. Realize, however, that these coefficients represent the relative numbers of reactants and products, and, therefore, they may be correctly interpreted as ratios. Methane and oxygen react to yield carbon dioxide and water in a 1:2:1:2 ratio. This ratio is satisfied if the numbers of these molecules are, respectively, 1-2-1-2, or 2-4-2-4, or 3-6-3-6, and so on ( [link] ). Likewise, these coefficients may be interpreted with regard to any amount (number) unit, and so this equation may be correctly read in many ways, including:

  • One methane molecule and two oxygen molecules react to yield one carbon dioxide molecule and two water molecules.
  • One dozen methane molecules and two dozen oxygen molecules react to yield one dozen carbon dioxide molecules and two dozen water molecules.
  • One mole of methane molecules and 2 moles of oxygen molecules react to yield 1 mole of carbon dioxide molecules and 2 moles of water molecules.
This image has a left side, labeled, “Mixture before reaction” separated by a vertical dashed line from right side labeled, “Mixture after reaction.” On the left side of the figure, two types of molecules are illustrated with space-filling models. Six of the molecules have only two red spheres bonded together. Three of the molecules have four small white spheres evenly distributed about and bonded to a central, larger black sphere. On the right side of the dashed vertical line, two types of molecules which are different from those on the left side are shown. Six of the molecules have a central red sphere to which smaller white spheres are bonded. The white spheres are not opposite each other on the red atoms, giving the molecule a bent shape or appearance. The second molecule type has a central black sphere to which two red spheres are attached on opposite sides, resulting in a linear shape or appearance. Note that in space filling models of molecules, spheres appear slightly compressed in regions where there is a bond between two atoms. On each side of the dashed line, twelve red, three black, and twelve white spheres are present.
Regardless of the absolute numbers of molecules involved, the ratios between numbers of molecules of each species that react (the reactants) and molecules of each species that form (the products) are the same and are given by the chemical reaction equation.

Questions & Answers

what is the meaning of intermolecular force
Eunice Reply
is the force of attraction that exist between two or more molecules
Johnson
What is a primary standard solution ?
Duval
a known solution
Fiko
Characteristic of a primary standard solution
Duval
pauli's exclusion is based on what?
avdhesh Reply
What is greatest modification made in dalton's atomic theory?
Ngwesse Reply
Types of electrolytes
Treasure Reply
Strong, weak and non-electrolytes
Grace
welcome
Alieu
thanks what's this platform all about
Nnamdi
list 6 subatomic particles and their mass, speed and charges
Dubem Reply
combination of acid and base
Ayibiro Reply
that salt
Talhatu
calculate the mass in gram of NaOH present in 250cm3 of 0.1mol/dm3 of its solution
Omego Reply
The mass is 1.0grams. First you multiply the molecular weight and molarity which is 39.997g/mol x 0.1mol/dm3= 3.9997g/dm3. Then you convert dm3 to cm3. 1dm3 =1000cm3. In this case you would divide 3.9997 by 1000 which would give you 3.9997*10^-3 g/cm3. To get the mass you multiply 3.9997*10^-3 and
Kokana
250cm3 and get the mass as .999925, with significant figures the answer is 1.0 grams
Kokana
nitrogen, phosphorus, arsenic, antimony and Bismuth
faith Reply
What is d electronic configuration of for group 5
Miracle Reply
Can I know d electronic configuration of for group 5 elements
Miracle
2:5, 2:8:5, 2:8:8:5,...
Maxime
Thanks
Miracle
Pls what are d names of elements found in group 5
Miracle
define define. define
Muh Reply
what is enthalpy
Ayilaran Reply
total heat contents of the system is called enthalpy, it is state function.
Sajid
background of chemistry
Banji Reply
what is the hybridisation of carbon in formic acid?
Maham Reply
sp2 hybridization
Johnson
what is the first element
Josh Reply
HYDROGEN
Liklai
Element that has positive charge and its non metal Name the element
Liklai
helium
oga
sulphur
oga
hydrogen
Banji
account for the properties of organic compounds
mercy Reply
properties of organic compounds
mercy
Practice Key Terms 9

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask