<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Outline the basic premise of crystal field theory (CFT)
  • Identify molecular geometries associated with various d-orbital splitting patterns
  • Predict electron configurations of split d orbitals for selected transition metal atoms or ions
  • Explain spectral and magnetic properties in terms of CFT concepts

The behavior of coordination compounds cannot be adequately explained by the same theories used for main group element chemistry. The observed geometries of coordination complexes are not consistent with hybridized orbitals on the central metal overlapping with ligand orbitals, as would be predicted by valence bond theory. The observed colors indicate that the d orbitals often occur at different energy levels rather than all being degenerate, that is, of equal energy, as are the three p orbitals. To explain the stabilities, structures, colors, and magnetic properties of transition metal complexes, a different bonding model has been developed. Just as valence bond theory explains many aspects of bonding in main group chemistry, crystal field theory is useful in understanding and predicting the behavior of transition metal complexes.

Crystal field theory

To explain the observed behavior of transition metal complexes (such as how colors arise), a model involving electrostatic interactions between the electrons from the ligands and the electrons in the unhybridized d orbitals of the central metal atom has been developed. This electrostatic model is crystal field theory    (CFT). It allows us to understand, interpret, and predict the colors, magnetic behavior, and some structures of coordination compounds of transition metals.

CFT focuses on the nonbonding electrons on the central metal ion in coordination complexes not on the metal-ligand bonds. Like valence bond theory, CFT tells only part of the story of the behavior of complexes. However, it tells the part that valence bond theory does not. In its pure form, CFT ignores any covalent bonding between ligands and metal ions. Both the ligand and the metal are treated as infinitesimally small point charges.

All electrons are negative, so the electrons donated from the ligands will repel the electrons of the central metal. Let us consider the behavior of the electrons in the unhybridized d orbitals in an octahedral complex. The five d orbitals consist of lobe-shaped regions and are arranged in space, as shown in [link] . In an octahedral complex, the six ligands coordinate along the axes.

This figure includes diagrams of five d orbitals. Each diagram includes three axes. The z-axis is vertical and is denoted with an upward pointing arrow. It is labeled “z” in the first diagram. Arrows similarly identify the x-axis with an arrow pointing from the rear left to the right front, diagonally across the figure and the y-axis with an arrow pointing from the left front diagonally across the figure to the right rear of the diagram. These axes are similarly labeled as “x” and “y.” In this first diagram, four orange balloon-like shapes extend from a point at the origin out along the x- and y- axes in positive and negative directions covering just over half the length of the positive and negative x- and y- axes. Beneath the diagram is the label, “d subscript ( x superscript 2 minus y superscript 2 ).” The second diagram just right of the first is similar except the x, y, and z labels have been replaced in each instance with the letter L. Only a pair of the orange balloon-like shapes are present and extend from the origin above and below along the vertical axis. An orange toroidal or donut shape is positioned around the origin, oriented through the x- and y- axes. This shape extends out to about a third of the length of the positive and negative regions of the x- and y- axes. This diagram is labeled, “d subscript ( z superscript 2 ).” The third through fifth diagrams, similar to the first, show four orange balloon-like shapes. These diagrams differ however in the orientation of the shapes along the axes and the x-, y-, and z-axis labels have each been replaced with the letter L. Planes are added to the figures to help show the orientation differences with these diagrams. In the third diagram, a green plane is oriented vertically through the length of the x-axis and a blue plane is oriented horizontally through the length of the y-axis. The balloon shapes extend from the origin to the spaces between the positive z- and negative y- axes, positive z- and positive y- axes, negative z- and negative y- axes, and negative z- and positive y- axes. This diagram is labeled, “d subscript ( y z ).” In the fourth diagram, a green plane is oriented vertically through the x- and y- axes and a blue plane is oriented horizontally through the length of the x-axis. The balloon shapes extend from the origin to the spaces between the positive z- and negative x- axes, positive z- and positive x- axes, negative z- and negative x- axes, and negative z- and positive x- axes. This diagram is labeled “d subscript ( x z ).” In the fifth diagram, a pink plane is oriented vertically through the length of the y-axis and a green plane is oriented vertically through the length of the x-axis. The balloon shapes extend from the origin to the spaces between the positive x- and negative y- axes, positive x- and positive y- axes, negative x- and negative y- axes, and negative x- and positive y- axes. This diagram is labeled, “d subscript ( x y ).”
The directional characteristics of the five d orbitals are shown here. The shaded portions indicate the phase of the orbitals. The ligands (L) coordinate along the axes. For clarity, the ligands have been omitted from the d x 2 y 2 orbital so that the axis labels could be shown.

In an uncomplexed metal ion in the gas phase, the electrons are distributed among the five d orbitals in accord with Hund's rule because the orbitals all have the same energy. However, when ligands coordinate to a metal ion, the energies of the d orbitals are no longer the same.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask