<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Define corrosion
  • List some of the methods used to prevent or slow corrosion

Corrosion is usually defined as the degradation of metals due to an electrochemical process. The formation of rust on iron, tarnish on silver, and the blue-green patina that develops on copper are all examples of corrosion. The total cost of corrosion in the United States is significant, with estimates in excess of half a trillion dollars a year.

Statue of liberty: changing colors

The Statue of Liberty is a landmark every American recognizes. The Statue of Liberty is easily identified by its height, stance, and unique blue-green color ( [link] ). When this statue was first delivered from France, its appearance was not green. It was brown, the color of its copper “skin.” So how did the Statue of Liberty change colors? The change in appearance was a direct result of corrosion. The copper that is the primary component of the statue slowly underwent oxidation from the air. The oxidation-reduction reactions of copper metal in the environment occur in several steps. Copper metal is oxidized to copper(I) oxide (Cu 2 O), which is red, and then to copper(II) oxide, which is black

2Cu ( s ) + 1 2 O 2 ( g ) Cu 2 O ( s ) ( red )
Cu 2 O ( s ) + 1 2 O 2 ( g ) 2CuO ( s ) ( black )

Coal, which was often high in sulfur, was burned extensively in the early part of the last century. As a result, sulfur trioxide, carbon dioxide, and water all reacted with the CuO

2CuO ( s ) + CO 2 ( g ) + H 2 O ( l ) Cu 2 CO 3 (OH) 2 ( s ) (green)
3CuO ( s ) + 2CO 2 ( g ) + H 2 O ( l ) Cu 2 ( CO 3 ) 2 (OH) 2 ( s ) (blue)
4CuO ( s ) + SO 3 ( g ) + 3H 2 O ( l ) Cu 4 SO 4 (OH) 6 ( s ) (green)

These three compounds are responsible for the characteristic blue-green patina seen today. Fortunately, formation of the patina created a protective layer on the surface, preventing further corrosion of the copper skin. The formation of the protective layer is a form of passivation, which is discussed further in a later chapter.

This figure contains two photos of the Statue of Liberty. Photo a appears to be an antique photo which shows the original brown color of the copper covered statue. Photo b shows the blue-green appearance of the statue today. In both photos, the statue is shown atop a building, with a body of water in the background.
(a) The Statue of Liberty is covered with a copper skin, and was originally brown, as shown in this painting. (b) Exposure to the elements has resulted in the formation of the blue-green patina seen today.

Perhaps the most familiar example of corrosion is the formation of rust on iron. Iron will rust when it is exposed to oxygen and water. The main steps in the rusting of iron appear to involve the following ( [link] ). Once exposed to the atmosphere, iron rapidly oxidizes.

anode: Fe ( s ) Fe 2+ ( a q ) + 2 e E Fe 2+ /Fe ° = −0.44 V

The electrons reduce oxygen in the air in acidic solutions.

cathode: O 2 ( g ) + 4 H + ( a q ) + 4 e 2 H 2 O ( l ) E O 2 /O 2 ° = +1.23 V
overall: 2Fe ( s ) + O 2 ( g ) + 4H + ( a q ) 2 Fe 2+ ( a q ) + 2 H 2 O ( l ) E cell ° = +1.67 V

What we call rust is hydrated iron(III) oxide, which forms when iron(II) ions react further with oxygen.

4 Fe 2+ ( a q ) + O 2 ( g ) + ( 4 + 2 x ) H 2 O ( l ) 2 Fe 2 O 3 · x H 2 O ( s ) + 8 H + ( a q )

The number of water molecules is variable, so it is represented by x . Unlike the patina on copper, the formation of rust does not create a protective layer and so corrosion of the iron continues as the rust flakes off and exposes fresh iron to the atmosphere.

A grey rectangle, labeled “iron,” is shown with thin purple layers, labeled “Paint layer,” at its upper and lower surfaces. A gap in the upper purple layer at the upper left of the diagram is labeled “Cathodic site.” A blue droplet labeled “water” is positioned on top of the gap. A curved arrow extends from a space above the droplet to the surface of the grey region and into the water droplet. The base of the arrow is labeled “O subscript 2” and the tip of the arrow is labeled “H subscript 2 O.” A gap to the right and on the bottom side of the grey region shows that some of the grey region is gone from the region beneath the purple layer. A water droplet covers this gap and extends into the open space in the grey rectangle. The label “F e superscript 2 positive” is at the center of the droplet. A curved arrow points from the edge of the grey area below to the label. A second curved arrow extends from the F e superscript 2 positive arrow to a rust brown chunk on the lower surface of the purple layer at the edge of the water droplet. A curved arrow extends from O subscript 2 outside the droplet into the droplet to the rust brown chunk. The grey region at the lower right portion of the diagram is labeled “Anodic site.” An arrow extends from the anodic site toward the cathodic site, which is labeled “e superscript negative.”
Once the paint is scratched on a painted iron surface, corrosion occurs and rust begins to form. The speed of the spontaneous reaction is increased in the presence of electrolytes, such as the sodium chloride used on roads to melt ice and snow or in salt water.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask