<< Chapter < Page Chapter >> Page >
volt = V = J C

In this equation, A is the current in amperes and C the charge in coulombs. Note that volts must be multiplied by the charge in coulombs (C) to obtain the energy in joules (J).

This figure contains a diagram of an electrochemical cell. Two beakers are shown. Each is just over half full. The beaker on the left contains a blue solution and is labeled below as “1 M solution of copper (II) nitrate ( C u ( N O subscript 3 ) subscript 2 ).” The beaker on the right contains a colorless solution and is labeled below as “1 M solution of silver nitrate ( A g N O subscript 3 ).” A glass tube in the shape of an inverted U connects the two beakers at the center of the diagram. The tube contents are colorless. The ends of the tubes are beneath the surface of the solutions in the beakers and a small grey plug is present at each end of the tube. The plug in the left beaker is labeled “Porous plug.” At the center of the diagram, the tube is labeled “Salt bridge ( N a N O subscript 3 ). Each beaker shows a metal strip partially submerged in the liquid. The beaker on the left has an orange brown strip that is labeled “C u anode negative” at the top. The beaker on the right has a silver strip that is labeled “A g cathode positive” at the top. A wire extends from the top of each of these strips to a rectangular digital readout indicating a reading of positive 0.46 V that is labeled “Voltmeter.” An arrow points toward the voltmeter from the left which is labeled “Flow of electrons.” Similarly, an arrow points away from the voltmeter to the right which is also labeled “Flow of electrons.” A curved arrow extends from the C u strip into the surrounding solution. The tip of this arrow is labeled “C u superscript 2 plus.” A curved arrow extends from the salt bridge into the beaker on the left into the blue solution. The tip of this arrow is labeled “N O subscript 3 superscript negative.” A curved arrow extends from the solution in the beaker on the right to the A g strip. The base of this arrow is labeled “A g superscript plus.” A curved arrow extends from the colorless solution to salt bridge in the beaker on the right. The base of this arrow is labeled “N O subscript 3 superscript negative.” Just right of the center of the salt bridge on the tube an arrow is placed on the salt bridge that points down and to the right. The base of this arrow is labeled “N a superscript plus.” Just above this region of the tube appears the label “Flow of cations.” Just left of the center of the salt bridge on the tube an arrow is placed on the salt bridge that points down and to the left. The base of this arrow is labeled “N O subscript 3 superscript negative.” Just above this region of the tube appears the label “Flow of anions.”
In this standard galvanic cell, the half-cells are separated; electrons can flow through an external wire and become available to do electrical work.

When the electrochemical cell is constructed in this fashion, a positive cell potential indicates a spontaneous reaction and that the electrons are flowing from the left to the right. There is a lot going on in [link] , so it is useful to summarize things for this system:

  • Electrons flow from the anode to the cathode: left to right in the standard galvanic cell in the figure.
  • The electrode in the left half-cell is the anode because oxidation occurs here. The name refers to the flow of anions in the salt bridge toward it.
  • The electrode in the right half-cell is the cathode because reduction occurs here. The name refers to the flow of cations in the salt bridge toward it.
  • Oxidation occurs at the anode (the left half-cell in the figure).
  • Reduction occurs at the cathode (the right half-cell in the figure).
  • The cell potential, +0.46 V, in this case, results from the inherent differences in the nature of the materials used to make the two half-cells.
  • The salt bridge must be present to close (complete) the circuit and both an oxidation and reduction must occur for current to flow.

There are many possible galvanic cells, so a shorthand notation is usually used to describe them. The cell notation    (sometimes called a cell diagram) provides information about the various species involved in the reaction. This notation also works for other types of cells. A vertical line, │, denotes a phase boundary and a double line, ‖, the salt bridge. Information about the anode is written to the left, followed by the anode solution, then the salt bridge (when present), then the cathode solution, and, finally, information about the cathode to the right. The cell notation for the galvanic cell in [link] is then

Cu ( s ) Cu 2+ ( a q , 1 M ) Ag + ( a q , 1 M ) Ag ( s )

Note that spectator ions are not included and that the simplest form of each half-reaction was used. When known, the initial concentrations of the various ions are usually included.

One of the simplest cells is the Daniell cell. It is possible to construct this battery by placing a copper electrode at the bottom of a jar and covering the metal with a copper sulfate solution. A zinc sulfate solution is floated on top of the copper sulfate solution; then a zinc electrode is placed in the zinc sulfate solution. Connecting the copper electrode to the zinc electrode allows an electric current to flow. This is an example of a cell without a salt bridge, and ions may flow across the interface between the two solutions.

Some oxidation-reduction reactions involve species that are poor conductors of electricity, and so an electrode is used that does not participate in the reactions. Frequently, the electrode is platinum, gold, or graphite, all of which are inert to many chemical reactions. One such system is shown in [link] . Magnesium undergoes oxidation at the anode on the left in the figure and hydrogen ions undergo reduction at the cathode on the right. The reaction may be summarized as

Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask