<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain the Lewis model of acid-base chemistry
  • Write equations for the formation of adducts and complex ions
  • Perform equilibrium calculations involving formation constants

In 1923, G. N. Lewis proposed a generalized definition of acid-base behavior in which acids and bases are identified by their ability to accept or to donate a pair of electrons and form a coordinate covalent bond.

A coordinate covalent bond    (or dative bond) occurs when one of the atoms in the bond provides both bonding electrons. For example, a coordinate covalent bond occurs when a water molecule combines with a hydrogen ion to form a hydronium ion. A coordinate covalent bond also results when an ammonia molecule combines with a hydrogen ion to form an ammonium ion. Both of these equations are shown here.

This figure shows two reactions represented with Lewis structures. The first shows an O atom bonded to two H atoms. The O atom has two lone pairs of electrons. There is a plus sign and then an H atom with a superscript positive sign followed by a right-facing arrow. The next Lewis structure is in brackets and shows an O atom bonded to three H atoms. There is one lone pair of electrons on the O atom. Outside of the brackets is a superscript positive sign. The second reaction shows an N atom bonded to three H atoms. The N atom has one lone pair of electrons. There is a plus sign and then an H superscript positive sign. After the H superscript positive sign is a right-facing arrow. The next Lewis structure is in brackets. It shows an N atom bonded to four H atoms. There is a superscript positive sign outside the brackets.

A Lewis acid    is any species (molecule or ion) that can accept a pair of electrons, and a Lewis base    is any species (molecule or ion) that can donate a pair of electrons.

A Lewis acid-base reaction occurs when a base donates a pair of electrons to an acid. A Lewis acid-base adduct    , a compound that contains a coordinate covalent bond between the Lewis acid and the Lewis base, is formed. The following equations illustrate the general application of the Lewis concept.

The boron atom in boron trifluoride, BF 3 , has only six electrons in its valence shell. Being short of the preferred octet, BF 3 is a very good Lewis acid and reacts with many Lewis bases; a fluoride ion is the Lewis base in this reaction, donating one of its lone pairs:

This figure illustrates a chemical reaction using structural formulas. On the left, an F atom is surrounded by four electron dot pairs and has a superscript negative symbol. This structure is labeled below as “Lewis base.” Following a plus sign is another structure which has a B atom at the center and three F atoms single bonded above, right, and below. Each F atom has three pairs of electron dots. This structure is labeled below as “Lewis acid.” Following a right pointing arrow is a structure in brackets that has a central B atom to which 4 F atoms are connected with single bonds above, below, to the left, and to the right. Each F atom in this structure has three pairs of electron dots. Outside the brackets is a superscript negative symbol. This structure is labeled below as “Acid-base adduct.”

In the following reaction, each of two ammonia molecules, Lewis bases, donates a pair of electrons to a silver ion, the Lewis acid:

This figure illustrates a chemical reaction using structural formulas. On the left side, a 2 preceeds an N atom which has H atoms single bonded above, to the left, and below. A single electron dot pair is on the right side of the N atom. This structure is labeled below as “Lewis base.” Following a plus sign is an A g atom which has a superscript plus symbol. Following a right pointing arrow is a structure in brackets that has a central A g atom to which N atoms are connected with single bonds to the left and to the right. Each of these N atoms has H atoms bonded above, below, and to the outside of the structure. Outside the brackets is a superscript plus symbol. This structure is labeled below as “Acid-base adduct.”

Nonmetal oxides act as Lewis acids and react with oxide ions, Lewis bases, to form oxyanions:

This figure illustrates a chemical reaction using structural formulas. On the left, an O atom is surrounded by four electron dot pairs and has a superscript 2 negative. This structure is labeled below as “Lewis base.” Following a plus sign is another structure which has an S atom at the center. O atoms are single bonded above and below. These O atoms have three electron dot pairs each. To the right of the S atom is a double bonded O atom which has two pairs of electron dots. This structure is labeled below as “Lewis acid.” Following a right pointing arrow is a structure in brackets that has a central S atom to which 4 O atoms are connected with single bonds above, below, to the left, and to the right. Each of the O atoms has three pairs of electron dots. Outside the brackets is a superscript 2 negative. This structure is labeled below as “Acid-base adduct.”

Many Lewis acid-base reactions are displacement reactions in which one Lewis base displaces another Lewis base from an acid-base adduct, or in which one Lewis acid displaces another Lewis acid:

This figure shows three chemical reactions in three rows using structural formulas. In the first row, to the left, in brackets is a structure that has a central A g atom to which N atoms are connected with single bonds to the left and to the right. Each of these N atoms has H atoms bonded above, below, and to the outside of the structure. Outside the brackets is a superscript plus symbol. This structure is labeled below as “Acid-base adduct.” Following a plus sign is a 2 and another structure in brackets that shows a C atom triple bonded to an N atom. The C atom has an unshared electron pair on its left side and the N atom has an unshared pair on its right side. Outside the brackets to the right is a superscript negative symbol. This structure is labeled below as “Base.” Following a right pointing arrow is a structure in brackets that has a central A g atom to which 4 FC atoms are connected with single bonds to the left and to the right. At each of the two ends, N atoms are triple bonded to the C atoms. The N atoms each have an unshared electron pair at the end of the structure. Outside the brackets is a superscript negative symbol. This structure is labeled below as “New adduct.” Following a plus sign is an N atom which has H atoms single bonded above, to the left, and below. A single electron dot pair is on the left side of the N atom. This structure is labeled below as “New base.” In the second row, on the left side in brackets is a structure with a central C atom. O atoms, each with three unshared electron pairs, are single bonded above and below and a third O atom, with two unshared electron pairs, is double bonded to the right. Outside the brackets is a superscript 2 negative. This structure is labeled below as “Acid-base adduct.” Following a plus sign is another structure which has an S atom at the center. O atoms are single bonded above and below. These O atoms have three electron dot pairs each. To the right of the S atom is a double bonded O atom which has two pairs of electron dots. This structure is labeled below as “Acid.” Following a right pointing arrow is a structure in brackets that has a central S atom to which 4 O atoms are connected with single bonds above, below, to the left, and to the right. Each of the O atoms has three pairs of electron dots. Outside the brackets is a superscript 2 negative. This structure is labeled below as “New adduct.”

The last displacement reaction shows how the reaction of a Brønsted-Lowry acid with a base fits into the Lewis concept. A Brønsted-Lowry acid such as HCl is an acid-base adduct according to the Lewis concept, and proton transfer occurs because a more stable acid-base adduct is formed. Thus, although the definitions of acids and bases in the two theories are quite different, the theories overlap considerably.

Many slightly soluble ionic solids dissolve when the concentration of the metal ion in solution is decreased through the formation of complex (polyatomic) ions in a Lewis acid-base reaction. For example, silver chloride dissolves in a solution of ammonia because the silver ion reacts with ammonia to form the complex ion     Ag ( NH 3 ) 2 + . The Lewis structure of the Ag ( NH 3 ) 2 + ion is:

A structure is shown in brackets. The structure has a central A g atom to which N atoms are single bonded to the left and right. Each of these atoms N atom has H atoms single bonded above, below, and to the outer end of the structure. Outside the brackets is a superscripted plus.

The equations for the dissolution of AgCl in a solution of NH 3 are:

AgCl ( s ) Ag + ( a q ) + Cl ( a q )
Ag + ( a q ) + 2 NH 3 ( a q ) Ag ( NH 3 ) 2 + ( a q )
Net: AgCl ( s ) + 2 NH 3 ( a q ) Ag ( NH 3 ) 2 + ( a q ) + Cl ( a q )

Aluminum hydroxide dissolves in a solution of sodium hydroxide or another strong base because of the formation of the complex ion Al ( OH ) 4 . The Lewis structure of the Al ( OH ) 4 ion is:

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask