<< Chapter < Page Chapter >> Page >
H + + OH H 2 O

We call the product that remains after an acid donates a proton the conjugate base    of the acid. This species is a base because it can accept a proton (to re-form the acid):

acid proton + conjugate base HF H + + F H 2 SO 4 H + + HSO 4 H 2 O H + + OH HSO 4 H + + SO 4 2− NH 4 + H + + NH 3

We call the product that results when a base accepts a proton the base’s conjugate acid    . This species is an acid because it can give up a proton (and thus re-form the base):

base + proton conjugate acid OH + H + H 2 O H 2 O + H + H 3 O + NH 3 + H + NH 4 + S 2− + H + HS CO 3 2− + H + HCO 3 F + H + HF

In these two sets of equations, the behaviors of acids as proton donors and bases as proton acceptors are represented in isolation. In reality, all acid-base reactions involve the transfer of protons between acids and bases. For example, consider the acid-base reaction that takes place when ammonia is dissolved in water. A water molecule (functioning as an acid) transfers a proton to an ammonia molecule (functioning as a base), yielding the conjugate base of water, OH , and the conjugate acid of ammonia, NH 4 + :

This figure has three parts in two rows. In the first row, two diagrams of acid-base pairs are shown. On the left, a space filling model of H subscript 2 O is shown with a red O atom at the center and two smaller white H atoms attached in a bent shape. Above this model is the label “H subscript 2 O (acid)” in purple. An arrow points right, which is labeled “Remove H superscript plus.” To the right is another space filling model with a single red O atom to which a single smaller white H atom is attached. The label in purple above this model reads, “O H superscript negative (conjugate base).” Above both of these red and white models is an upward pointing bracket that is labeled “Conjugate acid-base pair.” To the right is a space filling model with a central blue N atom to which three smaller white H atoms are attached in a triangular pyramid arrangement. A label in green above reads “N H subscript 3 (base).” An arrow labeled “Add H superscript plus” points right. To the right of the arrow is another space filling model with a blue central N atom and four smaller white H atoms in a tetrahedral arrangement. The green label above reads “N H subscript 3 superscript plus (conjugate acid).” Above both of these blue and white models is an upward pointing bracket that is labeled “Conjugate acid-base pair.” The second row of the figure shows the chemical reaction, H subscript 2 O ( l ) is shown in purple, and is labeled below in purple as “acid,” plus N H subscript 3 (a q) in green, labeled below in green as “base,” followed by a double sided arrow arrow and O H superscript negative (a q) in purple, labeled in purple as “conjugate base,” plus N H subscript 4 superscript plus (a q)” in green, which is labeled in green as “conjugate acid.” The acid on the left side of the equation is connected to the conjugate base on the right with a purple line. Similarly, the base on the left is connected to the conjugate acid on the right side.

The reaction between a Brønsted-Lowry acid and water is called acid ionization    . For example, when hydrogen fluoride dissolves in water and ionizes, protons are transferred from hydrogen fluoride molecules to water molecules, yielding hydronium ions and fluoride ions:

This figure has two rows. In both rows, a chemical reaction is shown. In the first, structural formulas are provided. In this model, in purple, an H atom is connected to an F atom with a single bond. The F atom has pairs of electron dots at the top, right, and bottom. This is followed by a plus sign, which is followed in green by an O atom which has H atoms singly bonded above and to the right. The O atom has pairs of electron dots on its left and lower sides. A double arrow follows. To the right, in brackets is a structure with a central O atom in green, with green H atoms singly bonded above and to the right. A pair of green electron dots is on the lower side of the O atom. To the left of the green O atom, a purple H atom is singly bonded. This is followed by a plus sign and an F atom in purple with pairs of electron dots above, right, below, and to the left. This atom also has a superscript negative sign. The reaction is written in symbolic form below. H F is labeled in purple below as “Acid subscript 1.” This is followed by plus H subscript 2 O, which is labeled in green below as “Base subscript 2.” A double sided arrow follows. To the right is H subscript 3 O superscript plus, which is labeled in green as below in as “Acid subscript 2.” This is followed by plus and F surrounded by 4 pairs of dots and superscript negative. The label below in purple reads, “Base subscript 1.” To the right of the reactions is the formula, K subscript a equals left bracket H subscript 3 O superscript plus right bracket left bracket F superscript negative right bracket all over left bracket H F right bracket.

When we add a base to water, a base ionization    reaction occurs in which protons are transferred from water molecules to base molecules. For example, adding pyridine to water yields hydroxide ions and pyridinium ions:

This figure has two rows. In both rows, a chemical reaction is shown. In the first, structural formulas are provided. In this model, in red, is an O atom which has H atoms singly bonded above and to the right. The O atom has lone pairs of electron dots on its left and lower sides. This is followed by a plus sign. The plus sign is followed, in blue, by an N atom with one lone pair of electron dots. The N atom forms a double bond with a C atom, which forms a single bond with a C atom. The second C atom forms a double bond with another C atom, which forms a single bond with another C atom. The fourth C atom forms a double bond with a fifth C atom, which forms a single bond with the N atom. This creates a ring structure. Each C atom is also bonded to an H atom. An equilibrium arrow follows this structure. To the right, in brackets is a structure where an N atom bonded to an H atom, which is red, appears. The N atom forms a double bond with a C atom, which forms a single bond with a C atom. The second C atom forms a double bond with another C atom, which forms a single bond with another C atom. The fourth C atom forms a double bond with a fifth C atom, which forms a single bond with the N atom. This creates a ring structure. Each C atom is also bonded to an H atom. Outside the brackets, to the right, is a superscript positive sign. This structure is followed by a plus sign. Another structure that appears in brackets also appears. An O atom with three lone pairs of electron dots is bonded to an H atom. There is a superscript negative sign outside the brackets. To the right, is the equation: k equals [ C subscript 5 N H subscript 6 superscript positive sign ] [ O H superscript negative sign] all divided by [ C subscript 5 N H subscript 5 ]. Under the initial equation, is this equation: H subscript 2 plus C subscript 5 N H subscript 5 equilibrium arrow C subscript 5 N H subscript 6 superscript positive sign plus O H superscript negative sign. H subscript 2 O is labeled, “acid,” in red. C subscript 5 N H subscript 5 is labeled, “base,” in blue. C subscript 5 N H subscript 6 superscript positive sign is labeled, “acid” in blue. O H superscript negative sign is labeled, “base,” in red.

Notice that both these ionization reactions are represented as equilibrium processes. The relative extent to which these acid and base ionization reactions proceed is an important topic treated in a later section of this chapter. In the preceding paragraphs we saw that water can function as either an acid or a base, depending on the nature of the solute dissolved in it. In fact, in pure water or in any aqueous solution, water acts both as an acid and a base. A very small fraction of water molecules donate protons to other water molecules to form hydronium ions and hydroxide ions:

This figure has two rows. In both rows, a chemical reaction is shown. In the first, structural formulas are provided. In this model, in purple, O atom which has H atoms singly bonded above and to the right. The O atom has pairs of electron dots on its left and lower sides. This is followed by a plus sign, which is followed in green by an O atom which has H atoms singly bonded above and to the right. The O atom has pairs of electron dots on its left and lower sides. A double arrow follows. To the right, in brackets is a structure with a central O atom in green, with green H atoms singly bonded above and to the right. A pair of green electron dots is on the lower side of the O atom. To the left of the green O atom, a purple H atom is singly bonded. Outside the brackets to the right is a superscript plus. This is followed by a plus sign and an O atom in purple with pairs of electron dots above, left, and below. An H atom is singly bonded to the right. This atom has a superscript negative sign. The reaction is written in symbolic form below. H subscript 2 O is labeled in purple below as “Acid subscript 1.” This is followed by plus H subscript 2 O, which is labeled in green below as “Base subscript 2.” A double sided arrow follows. To the right is H subscript 3 O superscript plus, which is labeled in green as below in as “Acid subscript 2.” This is followed by plus and O with pairs of dots above, below, and to the left with a singly bonded H on the right with a superscript negative. The label below in purple reads, “ Base subscript 1.”

This type of reaction, in which a substance ionizes when one molecule of the substance reacts with another molecule of the same substance, is referred to as autoionization    .

Pure water undergoes autoionization to a very slight extent. Only about two out of every 10 9 molecules in a sample of pure water are ionized at 25 °C. The equilibrium constant for the ionization of water is called the ion-product constant for water ( K w )    :

H 2 O ( l ) + H 2 O ( l ) H 3 O + ( a q ) + OH ( a q ) K w = [ H 3 O + ] [ OH ]

The slight ionization of pure water is reflected in the small value of the equilibrium constant; at 25 °C, K w has a value of 1.0 × 10 −14 . The process is endothermic, and so the extent of ionization and the resulting concentrations of hydronium ion and hydroxide ion increase with temperature. For example, at 100 °C, the value for K w is about 5.6 × 10 −13 , roughly 50 times larger than the value at 25 °C.

Ion concentrations in pure water

What are the hydronium ion concentration and the hydroxide ion concentration in pure water at 25 °C?

Solution

The autoionization of water yields the same number of hydronium and hydroxide ions. Therefore, in pure water, [H 3 O + ] = [OH ]. At 25 °C:

K w = [ H 3 O + ] [ OH ] = [ H 3 O + ] 2 = [ OH ] 2 = 1.0 × 10 −14

So:

[ H 3 O + ] = [ OH ] = 1.0 × 10 −14 = 1.0 × 10 −7 M

The hydronium ion concentration and the hydroxide ion concentration are the same, and we find that both equal 1.0 × 10 −7 M .

Check your learning

The ion product of water at 80 °C is 2.4 × 10 −13 . What are the concentrations of hydronium and hydroxide ions in pure water at 80 °C?

Answer:

[H 3 O + ] = [OH ] = 4.9 × 10 −7 M

Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask