<< Chapter < Page Chapter >> Page >
ln [ A ] = ( k ) ( t ) + ln [ A ] 0 y = m x + b

A plot of ln[ A ] versus t for a first-order reaction is a straight line with a slope of − k and an intercept of ln[ A ] 0 . If a set of rate data are plotted in this fashion but do not result in a straight line, the reaction is not first order in A .

Determination of reaction order by graphing

Show that the data in [link] can be represented by a first-order rate law by graphing ln[H 2 O 2 ] versus time. Determine the rate constant for the rate of decomposition of H 2 O 2 from this data.

Solution

The data from [link] with the addition of values of ln[H 2 O 2 ] are given in [link] .

A graph is shown with the label “Time ( h )” on the x-axis and “l n [ H subscript 2 O subscript 2 ]” on the y-axis. The x-axis shows markings at 6, 12, 18, and 24 hours. The vertical axis shows markings at negative 3, negative 2, negative 1, and 0. A decreasing linear trend line is drawn through five points represented at the coordinates (0, 0), (6, negative 0.693), (12, negative 1.386), (18, negative 2.079), and (24, negative 2.772).
The linear relationship between the ln[H 2 O 2 ] and time shows that the decomposition of hydrogen peroxide is a first-order reaction.
Trial Time (h) [H 2 O 2 ] ( M ) ln[H 2 O 2 ]
1 0 1.000 0.0
2 6.00 0.500 −0.693
3 12.00 0.250 −1.386
4 18.00 0.125 −2.079
5 24.00 0.0625 −2.772

The plot of ln[H 2 O 2 ] versus time is linear, thus we have verified that the reaction may be described by a first-order rate law.

The rate constant for a first-order reaction is equal to the negative of the slope of the plot of ln[H 2 O 2 ] versus time where:

slope = change in y change in x = Δ y Δ x = Δln [ H 2 O 2 ] Δ t

In order to determine the slope of the line, we need two values of ln[H 2 O 2 ] at different values of t (one near each end of the line is preferable). For example, the value of ln[H 2 O 2 ] when t is 6.00 h is −0.693; the value when t = 12.00 h is −1.386:

slope = −1.386 ( −0.693 ) 12.00 h 6.00 h = −0.693 6.00 h = −1.155 × 10 −2 h −1 k = slope = ( −1.155 × 10 −1 h −1 ) = 1.155 × 10 −1 h −1

Check your learning

Graph the following data to determine whether the reaction A B + C is first order.

Trial Time (s) [ A ]
1 4.0 0.220
2 8.0 0.144
3 12.0 0.110
4 16.0 0.088
5 20.0 0.074

Answer:

The plot of ln[ A ] vs. t is not a straight line. The equation is not first order:

A graph, labeled above as “l n [ A ] vs. Time” is shown. The x-axis is labeled, “Time ( s )” and the y-axis is labeled, “l n [ A ].” The x-axis shows markings at 5, 10, 15, 20, and 25 hours. The y-axis shows markings at negative 3, negative 2, negative 1, and 0. A slight curve is drawn connecting five points at coordinates of approximately (4, negative 1.5), (8, negative 2), (12, negative 2.2), (16, negative 2.4), and (20, negative 2.6).
Got questions? Get instant answers now!

Second-order reactions

The equations that relate the concentrations of reactants and the rate constant of second-order reactions are fairly complicated. We will limit ourselves to the simplest second-order reactions, namely, those with rates that are dependent upon just one reactant’s concentration and described by the differential rate law:

Rate = k [ A ] 2

For these second-order reactions, the integrated rate law is:

1 [ A ] = k t + 1 [ A ] 0

where the terms in the equation have their usual meanings as defined earlier.

The integrated rate law for a second-order reaction

The reaction of butadiene gas (C 4 H 6 ) with itself produces C 8 H 12 gas as follows:

2C 4 H 6 ( g ) C 8 H 12 ( g )

The reaction is second order with a rate constant equal to 5.76 × 10 −2 L/mol/min under certain conditions. If the initial concentration of butadiene is 0.200 M , what is the concentration remaining after 10.0 min?

Solution

We use the integrated form of the rate law to answer questions regarding time. For a second-order reaction, we have:

1 [ A ] = k t + 1 [ A ] 0

We know three variables in this equation: [ A ] 0 = 0.200 mol/L, k = 5.76 × 10 −2 L/mol/min, and t = 10.0 min. Therefore, we can solve for [ A ], the fourth variable:

1 [ A ] = ( 5.76 × 10 −2 L mol −1 min −1 ) ( 10 min ) + 1 0.200 mol −1 1 [ A ] = ( 5.76 × 10 −1 L mol −1 ) + 5.00 L mol −1 1 [ A ] = 5.58 L mol −1 [ A ] = 1.79 × 10 −1 mol L −1

Therefore 0.179 mol/L of butadiene remain at the end of 10.0 min, compared to the 0.200 mol/L that was originally present.

Check your learning

If the initial concentration of butadiene is 0.0200 M , what is the concentration remaining after 20.0 min?

Answer:

0.0196 mol/L

Got questions? Get instant answers now!

Questions & Answers

differentiate between demand and supply giving examples
Lambiv Reply
differentiated between demand and supply using examples
Lambiv
what is labour ?
Lambiv
how will I do?
Venny Reply
how is the graph works?I don't fully understand
Rezat Reply
information
Eliyee
devaluation
Eliyee
t
WARKISA
hi guys good evening to all
Lambiv
multiple choice question
Aster Reply
appreciation
Eliyee
explain perfect market
Lindiwe Reply
In economics, a perfect market refers to a theoretical construct where all participants have perfect information, goods are homogenous, there are no barriers to entry or exit, and prices are determined solely by supply and demand. It's an idealized model used for analysis,
Ezea
What is ceteris paribus?
Shukri Reply
other things being equal
AI-Robot
When MP₁ becomes negative, TP start to decline. Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of lab
Kelo
Extuples Suppose that the short-run production function of certain cut-flower firm is given by: Q=4KL-0.6K2 - 0.112 • Where is quantity of cut flower produced, I is labour input and K is fixed capital input (K-5). Determine the average product of labour (APL) and marginal product of labour (MPL)
Kelo
yes,thank you
Shukri
Can I ask you other question?
Shukri
what is monopoly mean?
Habtamu Reply
What is different between quantity demand and demand?
Shukri Reply
Quantity demanded refers to the specific amount of a good or service that consumers are willing and able to purchase at a give price and within a specific time period. Demand, on the other hand, is a broader concept that encompasses the entire relationship between price and quantity demanded
Ezea
ok
Shukri
how do you save a country economic situation when it's falling apart
Lilia Reply
what is the difference between economic growth and development
Fiker Reply
Economic growth as an increase in the production and consumption of goods and services within an economy.but Economic development as a broader concept that encompasses not only economic growth but also social & human well being.
Shukri
production function means
Jabir
What do you think is more important to focus on when considering inequality ?
Abdisa Reply
any question about economics?
Awais Reply
sir...I just want to ask one question... Define the term contract curve? if you are free please help me to find this answer 🙏
Asui
it is a curve that we get after connecting the pareto optimal combinations of two consumers after their mutually beneficial trade offs
Awais
thank you so much 👍 sir
Asui
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities, where neither p
Cornelius
In economics, the contract curve refers to the set of points in an Edgeworth box diagram where both parties involved in a trade cannot be made better off without making one of them worse off. It represents the Pareto efficient allocations of goods between two individuals or entities,
Cornelius
Suppose a consumer consuming two commodities X and Y has The following utility function u=X0.4 Y0.6. If the price of the X and Y are 2 and 3 respectively and income Constraint is birr 50. A,Calculate quantities of x and y which maximize utility. B,Calculate value of Lagrange multiplier. C,Calculate quantities of X and Y consumed with a given price. D,alculate optimum level of output .
Feyisa Reply
Answer
Feyisa
c
Jabir
the market for lemon has 10 potential consumers, each having an individual demand curve p=101-10Qi, where p is price in dollar's per cup and Qi is the number of cups demanded per week by the i th consumer.Find the market demand curve using algebra. Draw an individual demand curve and the market dema
Gsbwnw Reply
suppose the production function is given by ( L, K)=L¼K¾.assuming capital is fixed find APL and MPL. consider the following short run production function:Q=6L²-0.4L³ a) find the value of L that maximizes output b)find the value of L that maximizes marginal product
Abdureman
types of unemployment
Yomi Reply
What is the difference between perfect competition and monopolistic competition?
Mohammed
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 2

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask