<< Chapter < Page Chapter >> Page >
A line graph is shown where the y-axis is labeled “Boiling point, ( degree sign, C )” and has values of “negative 150” to “150” from bottom to top in increments of 50. The x-axis is labeled “Period” and has values of “0” to “5” in increments of 1. Three lines are shown on the graph and are labeled in the legend. The red line is labeled as “halogen family,” the blue is “oxygen family” and the green is “nitrogen family.” The first point on the red line is labeled “H F” and is at point “2, 25.” The second point on the line is labeled “H C l” and is at point “3, negative 80” while the third point on the line is labeled “H B r” and is at point “4, negative 60.” The fourth point on the line is labeled “H I” and is at point “5, negative 40.” The first point on the green line is labeled “N H, subscript 3” and is at point “2, negative 40.” The second point on the line is labeled “P H, subscript 3” and is at point “3, negative 80” while the third point on the line is labeled “A s H, subscript 3” and is at point “4, negative 55.” The fourth point on the line is labeled “S b H, subscript 3” and is at point “5, negative 10.” The first point on the blue line is labeled “H, subscript 2, O” and is at point “2, 100.” The second point on the line is labeled “H, subscript 2, S” and is at point “3, negative 55” while the third point on the line is labeled “H, subscript 2, S e” and is at point “4, negative 45.” The fourth point on the line is labeled “H, subscript 2, T e” and is at point “5, negative 3.”
In comparison to periods 3−5, the binary hydrides of period 2 elements in groups 17, 16 and 15 (F, O and N, respectively) exhibit anomalously high boiling points due to hydrogen bonding.

Effect of hydrogen bonding on boiling points

Consider the compounds dimethylether (CH 3 OCH 3 ), ethanol (CH 3 CH 2 OH), and propane (CH 3 CH 2 CH 3 ). Their boiling points, not necessarily in order, are −42.1 °C, −24.8 °C, and 78.4 °C. Match each compound with its boiling point. Explain your reasoning.

Solution

The VSEPR-predicted shapes of CH 3 OCH 3 , CH 3 CH 2 OH, and CH 3 CH 2 CH 3 are similar, as are their molar masses (46 g/mol, 46 g/mol, and 44 g/mol, respectively), so they will exhibit similar dispersion forces. Since CH 3 CH 2 CH 3 is nonpolar, it may exhibit only dispersion forces. Because CH 3 OCH 3 is polar, it will also experience dipole-dipole attractions. Finally, CH 3 CH 2 OH has an −OH group, and so it will experience the uniquely strong dipole-dipole attraction known as hydrogen bonding. So the ordering in terms of strength of IMFs, and thus boiling points, is CH 3 CH 2 CH 3 <CH 3 OCH 3 <CH 3 CH 2 OH. The boiling point of propane is −42.1 °C, the boiling point of dimethylether is −24.8 °C, and the boiling point of ethanol is 78.5 °C.

Check your learning

Ethane (CH 3 CH 3 ) has a melting point of −183 °C and a boiling point of −89 °C. Predict the melting and boiling points for methylamine (CH 3 NH 2 ). Explain your reasoning.

Answer:

The melting point and boiling point for methylamine are predicted to be significantly greater than those of ethane. CH 3 CH 3 and CH 3 NH 2 are similar in size and mass, but methylamine possesses an −NH group and therefore may exhibit hydrogen bonding. This greatly increases its IMFs, and therefore its melting and boiling points. It is difficult to predict values, but the known values are a melting point of −93 °C and a boiling point of −6 °C.

Got questions? Get instant answers now!

Hydrogen bonding and dna

Deoxyribonucleic acid (DNA) is found in every living organism and contains the genetic information that determines the organism’s characteristics, provides the blueprint for making the proteins necessary for life, and serves as a template to pass this information on to the organism’s offspring. A DNA molecule consists of two (anti-)parallel chains of repeating nucleotides, which form its well-known double helical structure, as shown in [link] .

Two images are shown. The first lies on the left side of the page and shows a helical structure like a twisted ladder where the rungs of the ladder, labeled “Base pair” are red, yellow, green and blue paired bars. The red and yellow bars, which are always paired together, are labeled in the legend, which is titled “Nitrogenous bases” as “adenine” and “thymine,” respectively. The blue and green bars, which are always paired together, are labeled in the legend as “guanine” and “cytosine,” respectively. At the top of the helical structure, the left-hand side rail, or “Sugar, dash, phosphate backbone,” is labeled as “3, prime” while the right is labeled as “5, prime.” These labels are reversed at the bottom of the helix. To the right of the page is a large Lewis structure. The top left corner of this structure, labeled “5, prime,” shows a phosphorus atom single bonded to three oxygen atoms, one of which has a superscripted negative charge, and double bonded to a fourth oxygen atom. One of the single bonded oxygen atoms is single bonded to the left corner of a five-membered ring with an oxygen atom at its top point and which is single bonded to an oxygen atom on the bottom left. This oxygen atom is single bonded to a phosphorus atom that is single bonded to two other hydrogen atoms and double bonded to a fourth oxygen atom. The lower left of these oxygen atoms is single bonded to another oxygen atom that is single bonded to a five-membered ring with an oxygen in the upper bonding site. The bottom left of this ring has a hydroxyl group attached to it while the upper right carbon is single bonded to a nitrogen atom that is part of a five-membered ring bonded to a six-membered ring. Both of these rings have points of unsaturation and nitrogen atoms bonded into their structures. On the right side of the six-membered ring are two single bonded amine groups and a double bonded oxygen. Three separate dotted lines extend from these sites to corresponding sites on a second six-membered ring. This ring has points of unsaturation and a nitrogen atom in the bottom right bonding position that is single bonded to a five-membered ring on the right side of the image. This ring is single bonded to a carbon that is single bonded to an oxygen that is single bonded to a phosphorus. The phosphorus is single bonded to two other oxygen atoms and double bonded to a fourth oxygen atom. This group is labeled “5, prime.” The five-membered ring is also bonded on the top side to an oxygen that is bonded to a phosphorus single bonded to two other oxygen atoms and double bonded to a fourth oxygen atom. The upper left oxygen of this group is single bonded to a carbon that is single bonded to a five-membered ring with an oxygen in the bottom bonding position. This ring has a hydroxyl group on its upper right side that is labeled “3, prime” and is bonded on the left side to a nitrogen that is a member of a five-membered ring. This ring is bonded to a six-membered ring and both have points of unsaturation. This ring has a nitrogen on the left side, as well as an amine group, that have two dotted lines leading from them to an oxygen and amine group on a six membered ring. These dotted lines are labeled “Hydrogen bonds.” The six membered ring also has a double bonded oxygen on its lower side and a nitrogen atom on its left side that is single bonded to a five-membered ring. This ring connects to the two phosphate groups mentioned at the start of this to form a large circle. The name “guanine” is written below the lower left side of this image while the name “cytosine” is written on the lower right. The name “thymine” is written above the right side of the image and “adenine” is written on the top right. Three sections are indicated below the images where the left is labeled “Sugar, dash, phosphate backbone,” the middle is labeled “Bases” and the right is labeled “Sugar, dash, phosphate backbone.”
Two separate DNA molecules form a double-stranded helix in which the molecules are held together via hydrogen bonding. (credit: modification of work by Jerome Walker, Dennis Myts)

Each nucleotide contains a (deoxyribose) sugar bound to a phosphate group on one side, and one of four nitrogenous bases on the other. Two of the bases, cytosine (C) and thymine (T), are single-ringed structures known as pyrimidines. The other two, adenine (A) and guanine (G), are double-ringed structures called purines. These bases form complementary base pairs consisting of one purine and one pyrimidine, with adenine pairing with thymine, and cytosine with guanine. Each base pair is held together by hydrogen bonding. A and T share two hydrogen bonds, C and G share three, and both pairings have a similar shape and structure [link] .

A large Lewis structure is shown. The top left corner of this structure, labeled “5, prime,” shows a phosphorus atom single bonded to three oxygen atoms, one of which has a superscripted negative charge, and double bonded to a fourth oxygen atom. One of the single bonded oxygen atoms is single bonded to the left corner of a five-membered ring with an oxygen atom at its top point and which is single bonded to an oxygen atom on the bottom left. This oxygen atom is single bonded to a phosphorus atom that is single bonded to two other hydrogen atoms and double bonded to a fourth oxygen atom. The lower left of these oxygen atoms is single bonded to another oxygen atom that is single bonded to a five-membered ring with an oxygen in the upper bonding site. The bottom left of this ring has a hydroxyl group attached to it while the upper right carbon is single bonded to a nitrogen atom that is part of a five-membered ring bonded to a six-membered ring. Both of these rings have points of unsaturation and nitrogen atoms bonded into their structures. On the right side of the six-membered ring are two single bonded amine groups and a double bonded oxygen. Three separate dotted lines extend from these sites to corresponding sites on a second six-membered ring. This ring has points of unsaturation and a nitrogen atom in the bottom right bonding position that is single bonded to a five-membered ring on the right side of the image. This ring is single bonded to a carbon that is single bonded to an oxygen that is single bonded to a phosphorus. The phosphorus is single bonded to two other oxygen atoms and double bonded to a fourth oxygen atom. This group is labeled “5, prime.” The five-membered ring is also bonded on the top side to an oxygen that is bonded to a phosphorus single bonded to two other oxygen atoms and double bonded to a fourth oxygen atom. The upper left oxygen of this group is single bonded to a carbon that is single bonded to a five-membered ring with an oxygen in the bottom bonding position. This ring has a hydroxyl group on its upper right side that is labeled “3, prime” and is bonded on the left side to a nitrogen that is a member of a five-membered ring. This ring is bonded to a six-membered ring and both have points of unsaturation. This ring has a nitrogen on the left side, as well as an amine group, that have two dotted lines leading from them to an oxygen and amine group on a six membered ring. These dotted lines are labeled “Hydrogen bonds.” The six membered ring also has a double bonded oxygen on its lower side and a nitrogen atom on its left side that is single bonded to a five-membered ring. This ring connects to the two phosphate groups mentioned at the start of this to form a large circle. The name “guanine” is written below the lower left side of this image while the name “cytosine” is written on the lower right. The name “thymine” is written above the right side of the image and “adenine” is written on the top right. Three sections are indicated below the images where the left is labeled “Sugar, dash, phosphate backbone,” the middle is labeled “Bases” and the right is labeled “Sugar, dash, phosphate backbone.”
The geometries of the base molecules result in maximum hydrogen bonding between adenine and thymine (AT) and between guanine and cytosine (GC), so-called “complementary base pairs.”

The cumulative effect of millions of hydrogen bonds effectively holds the two strands of DNA together. Importantly, the two strands of DNA can relatively easily “unzip” down the middle since hydrogen bonds are relatively weak compared to the covalent bonds that hold the atoms of the individual DNA molecules together. This allows both strands to function as a template for replication.

Questions & Answers

Hello everyone, anyone who about precursor?
Nano Reply
What is an electron affinity
Emmanuel Reply
Electron affinity is d amount of energy absorbed in the process in which an electron is added to a neutral isolated gaseous atom
Oghre
very brief information on collision theory
VANGALA Reply
what does the term resistance means
Clifford Reply
what is matter
Abdulhameed Reply
matter is anything that has mass and occupied space.
sunday
okk tanx
Abdulhameed
list mixtures and their components
Clement Reply
describe how Ethene reacts with bromine
STABS
am new here please can someone one put me through
Onah
welcome
Yusup
Hello
asante
good evening all am now here
Onah Reply
what happening here
Onah
the principles and applications of extraction chromatographic methods in the isolation and purification of organic compounds
Precious Reply
what is the dislocation of CH³COOH
Abdul Reply
another name for alkane ?
adeyeye Reply
alkene
Kelechi
alkyne
Kelechi
alkanols
Kelechi
parafins
Ademola
what is the chemical formula for benzene
Emmanuel Reply
C6H6.
Ochonogor
correct
Kelechi
c6c6
Ajoge
Benzene C6H6
Ademola
what does each group on the periodic table stand for
Chidera Reply
what's lanthanide series
kimah Reply
lanthanide series are element in the 4f block from 57 to 70
Ummulkhairi
lanthanide series consist of F block element in the first series in the end of the periodic table..they are placed separately in the periodic table.because they possess different properties than rest of the elements!
Lareb
whats is Dalton's law
Wanger Reply
What is the real definition of chemistry
tony Reply
chemistry can be defined as one of the branchs of science that deals with the state and changes which matter undergoes
Kelechi
Who can write this organic chemistry 3-ethyl-1,1,4-trimethyl pentane
Kelechi
what is the formula of Benzene
Sunday
formula of benzene C6H6
funny
benzene is a cyclohexane c6h6
Rukmini
cyclohexene C6H6
Vilas
hi
Agbor
hey
Alex
I need a lesson tutor in Nigeria
Alex
Where in Nigeria
Organic
Practice Key Terms 8

Get the best Chemistry course in your pocket!





Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask