<< Chapter < Page Chapter >> Page >

Suppose three point masses are placed on a number line as follows (assume coordinates are given in meters):

m 1 = 5 kg, placed at ( −2 , −3 ) , m 2 = 3 kg, placed at ( 2 , 3 ) , m 3 = 2 kg, placed at ( −3 , −2 ) .

Find the center of mass of the system.

( −1 , −1 ) m

Got questions? Get instant answers now!

Center of mass of thin plates

So far we have looked at systems of point masses on a line and in a plane. Now, instead of having the mass of a system concentrated at discrete points, we want to look at systems in which the mass of the system is distributed continuously across a thin sheet of material. For our purposes, we assume the sheet is thin enough that it can be treated as if it is two-dimensional. Such a sheet is called a lamina    . Next we develop techniques to find the center of mass of a lamina. In this section, we also assume the density of the lamina is constant.

Laminas are often represented by a two-dimensional region in a plane. The geometric center of such a region is called its centroid    . Since we have assumed the density of the lamina is constant, the center of mass of the lamina depends only on the shape of the corresponding region in the plane; it does not depend on the density. In this case, the center of mass of the lamina corresponds to the centroid of the delineated region in the plane. As with systems of point masses, we need to find the total mass of the lamina, as well as the moments of the lamina with respect to the x - and y -axes.

We first consider a lamina in the shape of a rectangle. Recall that the center of mass of a lamina is the point where the lamina balances. For a rectangle, that point is both the horizontal and vertical center of the rectangle. Based on this understanding, it is clear that the center of mass of a rectangular lamina is the point where the diagonals intersect, which is a result of the symmetry principle    , and it is stated here without proof.

The symmetry principle

If a region R is symmetric about a line l , then the centroid of R lies on l .

Let’s turn to more general laminas. Suppose we have a lamina bounded above by the graph of a continuous function f ( x ) , below by the x -axis, and on the left and right by the lines x = a and x = b , respectively, as shown in the following figure.

This image is a graph of y=f(x). It is in the first quadrant. Under the curve is a shaded region labeled “R”. The shaded region is bounded to the left at x=a and to the right at x=b.
A region in the plane representing a lamina.

As with systems of point masses, to find the center of mass of the lamina, we need to find the total mass of the lamina, as well as the moments of the lamina with respect to the x - and y -axes. As we have done many times before, we approximate these quantities by partitioning the interval [ a , b ] and constructing rectangles.

For i = 0 , 1 , 2 ,… , n , let P = { x i } be a regular partition of [ a , b ] . Recall that we can choose any point within the interval [ x i 1 , x i ] as our x i * . In this case, we want x i * to be the x -coordinate of the centroid of our rectangles. Thus, for i = 1 , 2 ,… , n , we select x i * [ x i 1 , x i ] such that x i * is the midpoint of the interval. That is, x i * = ( x i 1 + x i ) / 2 . Now, for i = 1 , 2 ,… , n , construct a rectangle of height f ( x i * ) on [ x i 1 , x i ] . The center of mass of this rectangle is ( x i * , ( f ( x i * ) ) / 2 ) , as shown in the following figure.

This figure is a graph of the curve labeled f(x). It is in the first quadrant. Under the curve and above the x-axis there is a vertical shaded rectangle. the height of the rectangle is labeled f(xsubi). Also, xsubi = f(xsubi/2).
A representative rectangle of the lamina.

Questions & Answers

find the equation of the tangent to the curve y=2x³-x²+3x+1 at the points x=1 and x=3
Esther Reply
derivative of logarithms function
Iqra Reply
how to solve this question
sidra
ex 2.1 question no 11
khansa
anyone can help me
khansa
question please
Rasul
ex 2.1 question no. 11
khansa
i cant type here
khansa
Find the derivative of g(x)=−3.
Abdullah Reply
any genius online ? I need help!!
Guzorochi Reply
how can i help you?
Pina
need to learn polynomial
Zakariya
i will teach...
nandu
I'm waiting
Zakariya
plz help me in question
Abish
How can I help you?
Tlou
evaluate the following computation (x³-8/x-2)
Murtala Reply
teach me how to solve the first law of calculus.
Uncle Reply
teach me also how to solve the first law of calculus
Bilson
what is differentiation
Ibrahim Reply
only god knows😂
abdulkadir
f(x) = x-2 g(x) = 3x + 5 fog(x)? f(x)/g(x)
Naufal Reply
fog(x)= f(g(x)) = x-2 = 3x+5-2 = 3x+3 f(x)/g(x)= x-2/3x+5
diron
pweding paturo nsa calculus?
jimmy
how to use fundamental theorem to solve exponential
JULIA Reply
find the bounded area of the parabola y^2=4x and y=16x
Omar Reply
what is absolute value means?
Geo Reply
Chicken nuggets
Hugh
🐔
MM
🐔🦃 nuggets
MM
(mathematics) For a complex number a+bi, the principal square root of the sum of the squares of its real and imaginary parts, √a2+b2 . Denoted by | |. The absolute value |x| of a real number x is √x2 , which is equal to x if x is non-negative, and −x if x is negative.
Ismael
find integration of loge x
Game Reply
find the volume of a solid about the y-axis, x=0, x=1, y=0, y=7+x^3
Godwin Reply
how does this work
Brad Reply
Can calculus give the answers as same as other methods give in basic classes while solving the numericals?
Cosmos Reply
log tan (x/4+x/2)
Rohan
please answer
Rohan
y=(x^2 + 3x).(eipix)
Claudia
is this a answer
Ismael
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask